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Abstract — In this study, nonlinear transverse vibrations of a tensioned Euler-Bernoulli
beam resting on multiple supports are investigated. The immovable end conditions due
to simple supports cause stretching of neutral axis and introduce cubic nonlinearity to
the equations of motion. Forcing and damping effects are included in the analysis. The
general arbitrary number of support case is investigated and 3, 4, and 5 support cases
analyzed in detail. A perturbation technique (the method of multiple scales) is applied to
the equations of motion to obtain approximate analytical solutions. 3:1 internal
resonance case is also considered. Natural frequencies and mode shapes for the linear
problem are found for the tensioned beam. Nonlinear frequencies are calculated;
amplitude and phase modulation figures are presented for different forcing and damping
cases. Frequency-response and force-response curves are drawn. Different internal
resonance cases between modes are investigated.
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1. INTRODUCTION

Transverse vibrations of beams are of importance in engineering systems and
investigated in detail. A literature survey up to 1979 is done by Nayfeh and Mook [1].
Nonlinear free vibrations of multispan beams on elastic supports were studied by
Lewandowski [2] using dynamic stiffness method to find frequencies and nonlinear
modes of vibrations by considering effects of support flexibility on the frequency
amplitude relations. Ozkaya [3] discussed the effects of different end conditions for
beam-mass systems. More recent works on this type are due to [4-16]. These studies
include restrained beams [4, 5], in-span support [6,7], different boundary conditions for
nonlinear vibrations [8-10], stepped beam systems using artificial neural networks[9]
and finite element methods [12], single, multiple mass on simply supports [13-16], and
non ideal support cases for three different simply supported beams [16], infinite mode
analysis was performed [17]. Nonlinear vibrations and 3:1 internal resonances on
multiple supports were investigated and excitation frequency-frequency response curves
drawn for different support numbers [18] and Tekin et al. studied on three-to one
resonance in multi stepped beam systems [19]. For slightly curved beams with
stretching, one may refer to Rehfield [20]. There are also some studies about axially
moving beams composed of viscoelastic materials [17-23]. Beams simply-supported in
span were discussed and frequency response functions are determined [23]. Varadan et
al. [24] studied nonlinear behavior of a beam in bending with immovable ends for
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various loadings and edge conditions. The authors concluded that it was enough to
consider only the nonlinearity arising from the axial force in the nonlinear analysis of
beams with immovable ends since the hardening effect due to axial force predominates
over that resulting from the use of an actual nonlinear expression for curvature. Da Silva
[25] derived nonlinear equations for a class of inextensible flexible multibeam
structures having arbitrary cross section varying along its span and also having supports
and lumped masses. Cheng et al. [26] investigated nonlinear random response of
internally hinged beams using finite element method. Main and Jones [27, 28]
formulated exact analytical solutions for free vibrations of tensioned beams with an
intermediate viscous damper and a viscous damper attached transversely near a support
using dynamic stiffness method to obtain characteristic equations for both clamped and
pinned supports. Mazzilli et al. [29] constructed nonlinear normal modes and nonlinear
multi modes using the method of multiple scales for a beam with uniformly distributed
axial and a thrust force and compared with finite element method simulations.

In this study, nonlinear transverse vibrations of a tensioned Euler—Bernoulli beam with
multiple simple supports are considered. The beam is stretched during vibration due to
immovable supports. This introduces cubic nonlinearity to the equations of motion.
Transverse forcing and damping are also included in the problem. The equations of
motion are derived for general case: arbitrary number of supports, and then solved for 3,
and 4 support cases by using the method of multiple scales. Natural frequencies are
calculated and mode shapes are presented. The effect of support number on the natural
frequencies is investigated for the nonlinear vibrations. Amplitude and phase
modulation relations are presented for different forcing and damping cases. 3:1 internal
resonance cases are investigated between different modes of vibration.

2. EQUATIONS OF MOTION

Wl* . A Wz* % % Wi+l %
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Figure 1. Tensioned beam on multiple simple supports.

For the system shown in Fig. 1, In Figure 1, x__, denotes location of the m™ support

m+1

and w, _, denotes the transverse displacement of the beam section between supports m

and m+1. L is the length of the beam. ¢ is the time. The total number of supports is .

pA is the mass per unit length, £4 is longitudinal rigidity, £/ is flexural rigidity and P is

the axial tension force on the beam. The Lagrangian can be written as follows
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where dot denotes derivative with respect to ¢ and prime denotes derivative with
respect to x . The first integral is the kinetic energy of the beam section between any
successive supports. The second integral is the elastic energy in bending, the third
integral is the elastic energy in extension due to stretching of the neutral axis and the
last one is the elastic energy due to axial tension. Applying Hamilton’s principle and
performing the necessary algebra, the equations of motion and boundary conditions for
the general case for the tensioned beam in dimensional form is obtained as follows

PAW

m+

JHEW  —Pw _E4 > J. w'" x| w (2)

m+l m+1 n
2|5
.

"
wi (0.8 )=w; (0,6 )=0, W, (X0 )=W, (X, .t )=0,

*' . . *' . *” . . *” . .
Wit (X o8 )=Wois (X008 )Wy (X o8 )=W,y (X, 1)

”

Wt (L") =, (L") =0 (3)

The equations are made dimensionless using the following definitions

x—iw W, X _ 1 |EI
L’ m+1 R ,77m+1 L L2 ,OA

m+1

1 |EI . , PL
t, =—
P EI

m+1
,

(4)

where R is the radius of gyration of the beam cross-section with respect to the neutral
axis. Substituting the dimensionless parameters into the equations of motion yields

] n M1
.. v 2 " _ 12 "
Wm+1 + WWH—I _vp wm+1 - 5 z .[wr+1dx wm+1 (5)
r=0
n

3. METHOD OF MULTIPLE SCALES

The method of multiple scales will be applied to the partial differential equation
system and boundary conditions directly. There is no quadratic non-linearities, that’s
why one can write an expansion of the form

Wy (X,1,6) = 5Wm+1,1(x)To:T2)+53 Woer3 (%1515 ) + ... (6)

where ¢ is a small book-keeping parameter representing that the deflections are small.
This procedure models a weak non-linear system. 7=t and T 2262t are the fast and slow
time scales. Here only the primary resonance case is considered. The forcing and
damping terms are ordered as shown below so that they are included in the cubic order

of expansion, u=&’u, F, =& F the time derivatives are written as

m m+1 2

()=D,+&’D,, (")=D; +2¢’D,D,, where D, =0/0T, . After expansion, one obtains
equations of motion and boundary conditions at different orders as follows

Order (¢):



206 S.M. Bagdatli, H.R. Oz and E. Ozkaya

D Wm+1 1 + Wm+1 1 vam+1 1 O b Wl,l (Oﬁt) :WI”,I (Oﬁt) = 0 ' wm+1,1 (77m+1 7t) = wm+2,1 (77m+1 ’t) = 0

Wit s 1) =Wy (1,050 5 W;'1+1,1(77m+1’ 1) = W::1+2,1 D> 1) s Wy (L) =W, (LE) =0 (7)

Order (°):
DOW 11,3 +Wm+13 Vme+13 -2D,D 2 Wil
[ (8)
—2uDyw,.. +E{z J. W, 1dx}w mi +F . cosQT
r=0 g,

w;5(0,7) :W{:3 0,0)=0,W,,,3(7,150) = W,25(1,,1,0) =0, W/’n+1,3 (1,151 = W;n+2,3 (1,110
W:;+1,3 (M1150) = W,’;’1+2,3 (Mi150) W3 (L,2) :W;:+1,3 (Lt)=0

Solution of the first order of expansion gives natural frequency values and a solvability
condition is obtained from the second order of expansion.

3.1. Exact Solution to the Linear Problem

For Eq. (8) one can assume solutions of the form for any beam segment

=[A(T,)e'" +cclY,,.,, (%) 9)

m+l 1
where cc stands for complex conjugate of the preceding terms. Egs. (7) and (9) give

YW -V Y” _a)zYmH :O’ Yl (O):YI” (O):Oa sz+1(77nz+l)=Ym+2(77m+1)=0 (10)

m+1 p T m+l

Yoii(Mii )=Y oM ) Yo ) = Yy (M,00) Y.,)=Y,1=0

The solution of the equations can be sought by assuming the following shape function
for any beam segment

Y, (x)= C4m+le +C4m+ze +C4m+3e +C4m+4eﬁ (11)

Frequency equations can be obtained when the boundary conditions are applied.
3.2. Approximate Solution to the Non-linear Problem

Solution of nonlinear Eq. (8) gives corrections to the problem. They will have a
solution only if a solvability condition is satisfied as explained in reference [30]. The
secular and nonsecular terms are separated to find the solvability condition by assuming
a solution of the form

Wot1 3 =@, (xT, )em}TO W, xT1,,T,)+cc (12)

and inserting it into Eq. (8), the terms related with secularities are discarded. Here
w,..(x,T,,T,) stands for the solution related with non-secular terms. One obtains

m+l
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¢m+1 - ¢m+1 -V ¢m+1 - _2ia)(D2A+/JA)Ym+1
+= A A|:Z J.Yr’JrIZ il m+1 +;F +1€mT2

¢1 (0) :¢1” (0) = 0 s ¢m+1 (77m+1 ) = ¢m+2 (77m+1 ) = 0
¢:n+1 (77m+1) = ¢:n+l (77m+1) ’ ¢;+l (77m+1) = ¢r,;;+l (77m+1) ’ ¢n+1 (1) = ¢:+1 (1) = O (14)

Assuming that excitation frequency is close to one of the natural frequencies of the
system as shown below

Q=w+e'0(T,) (15)

(13)

where o is a detuning parameter of order 1, the solvability condition for Egs. (13) and
(14) is obtained as follows

ﬁwa%A+MU+§b%ﬁ2—§ﬁPﬂ:0 (16)
n MNrs1 n Mys1 n Nr+1
where I Y. de=1, Z J‘Y,’f,dx bz IF,+1K+1dx The  complex

amphtude Ain Eq (16) can be ertten in terms of a real amplitude a and a phase 6
Az;ﬂﬂk% (17)
Then amplitude and phase modulation equations can be obtained as follows
waD,y = a)aa—%bch +%fcosy, wD,a= —a),ua+%fsin7/ (18)

where, ¥ = 0T, —6 . Eq. (18) will be solved for steady-state case in the next section and
variation of nonlinear amplitude with forcing will be discussed.

4. NUMERICAL RESULTS

In this section numerical examples for frequencies will be presented for different
cases. Firstly, the linear natural frequencies for different tension forces and support
locations (7) will be calculated. Then, the non-linear frequencies for free, undamped
vibrations will be calculated. For this case, by taking y=f=oc =0, one obtains

D,a=0 and  a = ay (constant) (19)
from Eq. (19). Here qy is the steady-state real amplitude. The non-linear frequency is

w,=0+D,0=w+la, (20)

where 1=(3/16 )b’ / w is the correction coefficient due to nonlinear terms. Up to the
second order of approximation, the non-linear frequencies have a parabolic relation with
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the maximum amplitude of vibration. The linear frequencies and nonlinear correction
terms for the first five frequencies are presented in Table 1 for 3 support case, in Table 2
for 4 support case for different axial tension values. The effects of locations of supports
and axial tension are given. For the same support locations, the tension increases the
frequencies, as expected, as shown in Table 1. For a given value of tension, the effect on
the frequencies at different modes varies depending on the location of support. As the
support is moved to the center of the beam, the frequencies increase in the first modes
for all tension values. In other modes, it depends on the location of the node and
closeness of the support to the node.

Table 1. The first five frequencies and corrections due to nonlinear terms for v,=1, 10
and different 7 values for three support case.

Vp n @, [2F] 3 Dy s A
0.1 18.235343 58.671204 122.572995 210.121541 321.332650 1.863198
1.00 | 0.3 | 26.743873 86.548540 139.217694 | 204.494168 | 339.221550 | 3.297357
0.5 | 39.975291 62.044961 158.412881 | 200.288248 | 355.805407 | 7.310198
0.1 | 40.282610 91.944202 161.705195 252.596838 365.883295 | 0.762287
10.00 | 0.3 | 53.251780 125.653101 177.151732 | 244.979963 384.280263 1.586446
0.5 | 74.205035 91.264311 201.812027 | 238.892053 402.209843 | 4.090697

Table 2. The first five frequencies and corrections due to nonlinear terms for v,=1, 10 and
different 1 values for four support case.

Vp Ul 2 [0]] [2F] 3 [0F) as A
0.2 | 23.000017 | 74.190483 | 155.088058 | 265.891120 | 406.559884 | 2.370243
0.3 | 28.362907 | 92.699965 | 194.072026 | 321.310065 | 403.423882 | 3.114322
0.4 | 36.459731 | 117.944906 | 182.802245 | 274.384326 | 451.627198 | 4.433622
01 0.5 | 48.759392 | 104.552386 | 180.798089 | 306.735884 | 396.611039 | 6.888531
0.6 | 58.472939 | 89.277249 |199.013802 | 282.991786 | 417.120754 | 7.763814
1.00 0.7 | 47.640061 |121.011061 | 163.836619 | 291.755537 | 454.602796 | 3.980270
0.8 | 37.611300 | 105.905053 | 207.229104 | 301.928783 | 385.695187 | 2.542881
0.9 | 30.814771 | 85.704355 | 169.469074 | 282.126340 | 423.412296 | 1.844953
0.4 | 39.723634 | 128.254623 | 150.488184 | 272.056753 | 462.242046 | 4.245237
03 0.5 | 52.993323 | 136.331770 | 177.459798 | 334.512733 | 415.990173 | 6.402350
0.6 | 75.163601 | 123.969190 | 189.081660 | 285.850006 | 459.035825 | 11.387395
0.7 | 82.167472 | 134.202371 | 160.811222 | 307.943490 | 470.094119 | 12.710612
0.2 | 46.578915 | 108.874884 | 195.279228 | 309.143078 | 451.694780 | 1.067535
0.3 | 54.033760 | 129.789552 | 236.662486 | 365.622080 | 441.079562 | 1.552245
0.4 | 64.892609 | 157.928266 | 215.694876 | 315.984284 | 497.691033 | 2.415834
01 0.5 | 80.879356 | 134.334602 | 220.656272 | 348.060667 | 439.195150 | 4.057833
0.6 | 90.058699 | 119.213991 | 238.239592 | 324.455643 | 459.663458 | 4.405195
10.00 0.7 | 73.090648 | 160.342677 | 197.881535 | 333.011392 | 500.575273 | 2.386336
0.8 | 60.153227 | 140.755204 | 248.819925 | 343.775104 | 426.082274 | 1.509860
0.9 | 51.352917 | 117.829483 | 207.654395 | 323.956005 | 467.646583 | 1.028337
0.4 | 67.060424 | 166.398950 | 185.310096 | 314.701280 | 507.952437 | 2.372516
0.3 0.5 | 83.566988 | 174.401463 | 218.006961 | 377.578547 | 457.464405 | 3.936503
0.6 | 110.758293 | 162.739537 | 222.041658 | 326.537094 | 504.776860 | 7.439908
0.7 | 118.361161 | 172.726353 | 192.733377 | 348.837860 | 516.101396 | 8.254400

Nonlinear frequency versus amplitude curves are plotted in Figs. 2-3 for v,= 1, 10
respectively. In these figures, the variation of nonlinear frequency is plotted for three-
support case for the first mode when 7=0.1, 0.2, 0.3, 0.4 and 0.5. Nonlinearities are of
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hardening type. As the third support is located close to the midpoint the frequencies
increase which means the beam becomes stiff. In Figs. 2-3, v, values changed between 1
and 10, an increase in v, caused an increase in nonlinear frequencies. The behavior in all
figures is of hardening type. In Figs 4 and Figs. 5, four-support case and five-support
cases are shown respectively for v,= 1, 10. Again the behaviors are of hardening type.

et %10

n=0.1 | n=0.2 n=0.3 =04

100

Figure 3. Nonlinear frequency-amplitude variation

Figure 2. Nonlinear frequency-amplitude variation for v,= 10 and for different 7 values.

for v,= 1 and for different 7 values.
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Figure 5.Nonlinear frequency-amplitude variation for v,= 1
and for 77,=0.1, 77,=0.3 and 75=0.4, 0.5, 0.6, 0.7, 0.8, 0.9
values.

Figure 4. Nonlinear frequency-amplitude variation for
v,= 1 and for 7=0.1 and 77,=0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 values.

At the steady state, a’ and y” become zero. The frequency detuning parameter is as
follows

3 a2b2_ fZ 5
GZE w " dw’a’ A @D

For three-support case, frequency response curves, are plotted in Fig. 6 for v,=1,
respectively. This term is a measure for nearness of the forcing frequency to the natural
frequency. In all figures /=1, u=1 are assumed. In Fig. 6 for v,=1, vibration amplitudes
decrease as the support becomes closer to the midpoint and the behavior is of hardening
type. Maximum vibration amplitude is obtained when ¢>0 for all mid support locations
but at different ¢ values. Their maxima are obtained at lower frequencies when the
support location changed towards Y4 of the beam, then it is obtained at higher
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frequencies when the support is moved towards midpoint. The jump region becomes
smaller as the mid support is located towards middle of the beam. Comparison of Fig.6
shows that, maximum vibration amplitude is obtained at higher frequencies when the
support location is close to the ends or midpoint. In Figs. 7-8 and in Fig.9 the curves are
shown for four-support and five-support cases respectively. The behavior is of
hardening type in all figures and tension decreases the jump region.

- %p=in, =01
‘ ‘

0.6

L L L L L L L L L
-04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6. Forcing frequency-amplitude variation for Figure 7. Forcing frequency-amplitude variation for v,= 1
v,=1 and for different 7 values. and for 7,=0.1 and 7,=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
values.

;=10 m,=0.1 ;=1 1,=0.1 1,703

0.25

L L L L ' . . -0.4 '013 7012 70‘,1 6 0‘,1 012 0‘,3 0.4
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 o
. . s . o Figure 9. Forcing frequency-amplitude variation for v=1
Figure 8. Forcing frequency-amplitude variation for and for 1,=0.1, 7,=0.3 and 7;=0.4, 0.5, 0.6, 0.7, 0.8, 0.9
v,= 10 and for 77,=0.1 and 7,=0.2, 0.3, 0.4, 0.5, 0.6, ’ > e B B D BOs
0.7, 0.8, 0.9 values.

values.

5. INTERNAL RESONANCE AND STABILITY

In this section, 3:1 internal resonance case among natural frequencies will be
investigated. The solution was carried out for the three-support case only. The following
detuning parameters were defined,

Q=w,+&0(Ts), =30+ p(T>) (22)

The ratios of natural frequencies at different modes for different v, values are plotted in
Figs 10, 11. 3:1 internal resonances between ®;, @, @; 4 s are discussed in these
figures and support location necessary for internal resonances are presented. This
resonance is possible for v,=1 and 5, it is not possible for v,=10. In Fig. 10, for v,=1,
when the mid support is located about 77=0.34, 3:1 internal resonance is possible for w,/
;. The effect of mid support is slightly increasing in the interval 7=0-0.32. Replacing
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the support towards middle of the beam decreases frequency ratio continuously 7>0.32.
3:1 is not possible for w;/ w,. Similarly 3:1 internal resonance is possible for w,/ w;
around 77=0.23 and 7=0.38. In all curves, up to a specific support location there is very
slight effect (w,/ w;, 1=0-0.30), (w3/ @,, 1= 0-0.22), (04 @,, 1=0-0.18), (ws/ w3, 17=0-
0.18). In Fig. 11, for v,=5, 3:1 internal resonance is not possible for w,/ w;. 3:1 internal
resonance is possible for w,/ @, around 7=0.21, 7=0.40 and 7=0.50. In some curves, up
to a specific support location there is a very slight effect (ws/ w2, 7=0-0.20), (ws/ w3,
1=0- 0.15). In Figs. 12, 13, the effect of axial tension is depicted for single frequency
ratios. Variation of w,/w; with n for different v, values is depicted in Fig. 12. Increasing
v, values decrease the frequency ratio for all mid support locations for approximately
n7>0.3. 3:1 internal resonance is possible for v,=0.1,0.5 and 1 at 7= 0.34, but no 3:1
internal resonance is possible for v,=10. Variation of w,/w, with 1 for different v,
values is depicted in Fig. 13. No 3:1 internal resonances is possible for w4/, for v,=10.
For v,=0.1, 0.5 and 1, 3:1 internal resonances is possible about 7=0.24 and 0.38. No 3:1
internal resonances is possible for w3/, and ws/w; for v, values between 0.1 and 10.

Figure 10. Ratios of different frequencies for v,=1. Figure 11. Ratios of different frequencies for v,=5.

Figure 12. Variation of w,/w; with 7 for different v, values. Figure 13. Variation of w,/w, with 1 for
different v, values.

Under the assumption of three-to-one internal resonances, the mode directly excited
(o;) and indirectly excited through internal resonance (w;) will survive and all other
modes decay over time due to the damping. The amplitudes can be written as follows
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W (x. T, ) = (4,(T, )™ +ce)¥,(x) +(4,(T, )™ + celty(x)

| | (23)
s (x,T), T, ) = (4, (T, ) + ce)V,(x )+ (4,(T, )™ +ce ), (x)

Inserting this into the O(¢), one obtains

1
: 1t ,
2 v 2. n 2 2 "
Dyw, ; +w; —vow), ==2D,D,w, , = 2uD,w, , + > J. w,,dx + J. w,,dx |wi, + F, cos T,
0 n

. 17 . 0o
Dyjw, ; + Wy —vowh ;= =2D,D,w, , — 2uD,w, , + E{J. w,dx +I w,dx \wh, + F, cos T, (24)
0 n

Solution of the equations at this order is as follows
w5 (6.7 5) = (x L) ™" + ¢, (x. T )" +cc+ W(x.T,.T;)

25
s (5T 1) = (6 T ™ 4+, (5, ™ + e+ (5., T,) 2

The solvability conditions can be calculated as follows,

2wy (D, A, + IUAI)"'%blelzZl +%leAzeipszlb3 + AIAZZZ (byby + 2b32)_%felﬂz =0

2iw,(Dy A, + pd,) + %bjAsz + A A A, (b,b, +2b,%) + %AﬁAze-fﬂz bb,=0  (26)
where,

nooy2 Ly noo2 Ly oy oy Ly
b=[Y, de+[Y, dv, b,=[Y, dc+[Y, dx,b,=[Y,Y,dc+ [V, Y, dx,
0 n 0 n 0 n

n 1 n 1 n 1 (27)
[Frdc+[FY,de = f,[Vde+ [V de =1, [V, de+[Y, dx =1,
0 n 0 n 0 U
The complex amplitudes can be written in polar form
1 - 1 .
4 :Ea1 (Tz)elgl(TZ)a 4, =5a2(T2)etHZ(Tz) (28)

One finally obtains frequency modulation equations for steady state solutions,
D,a, = D,a, = D,y =D, =0, then Eq. (26) becomes

3 3 1 1
w,a,c —%afblz —Ealzazblb3 cos 3 —galazz(blb2 +2b,%) +Efcosy =0

Sy ox —ialzazblb3 sin 8 +lfsin}/ =0
16 2 29
3 | (29)

Rajbj +§a12a2 (bb, + 2b32)+%a13b1b3 cos B = w,a,(36 — p)

%aﬁblb3 sin f—w,ua, =0

where y =0T, -6,, =0, -36, + pT,,D,0, =D, +3(c —D,y)—p
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By evaluating the eigenvalues of the jacobian matrix, stability can be
determined. Eigenvalues should not have positive real parts to maintain stability.
External excitation frequency response graphs are given in Figs. 15, 16 for
@;=29.613795, ®,=8.16346, 1=0.075 and f=1 for three-support case (3:1 internal
resonance: @, /w;= 3.0027). External excitation frequency is applied to the first mode
and responses are calculated for the first and second modes. The second mode is
activated for ¢ > 0.The frequency amplitude response curves are shown in Figs. 17, 18
for @,=29.613795, ©,=88.921622, 1=0.075 and 0=0.2 for three-support case. As shown
in the figures, different forcing amplitudes are applied to the first mode, the second
mode amplitude is determined. In these figures v,=1 and #=0.344. The parameters
defined in Eq. (22) and Eq. (27) and used here are p=0.0802, b;=41.2196, b,=59.4933,
bs=-21.5592
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Figure 14. Forcing frequency-1* mode amplitude Figure 15. Forcing frequency-2* mode amplitude
variation for v/=1 and £=0.075. variation for vy=1 and £=0.075.
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Figure 16. Forcing amplitude-1* mode amplitude Figure 17. Forcing amplitude-2"! mode amplitude
variation for v;=1 and £=0.075. variation for vy=1 and £=0.075.

6. CONCLUDING REMARKS

The transverse vibrations of a tensioned Euler-Bernoulli beam having multiple
supports are investigated. The non-linear equations of motion including stretching of the
neutral axis due to immovable end conditions are derived. The method of multiple
scales is applied to obtain approximate solutions. Exact solutions and numerical values
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for natural frequencies are given for linear problem. For the non-linear problem,
correction terms to linear problem are obtained. Non-linear free and forced vibrations
are investigated in detail. The effects of the positions of supports and axial tension are
determined. The corrections increase as the number of supports increase and natural
frequencies increase always. Stretching of the neutral axis causes a non-linearity of
hardening type. For forced and damped vibrations, since the non-linearity is of
hardening type, the frequency-response curves are bent to right, causing an increase in
the multi—valued regions. When support number is increased, the multi—valued regions
and maximum amplitude decrease. Then 3:1 internal resonances are investigated.
Support locations and tension values producing internal resonances for three-support
case are determined. No 3:1 internal resonance is possible for wz/w; and ws/w; for v,
values between 0.1 and 10. For other cases, it is possible for some values. Frequency-
response and force-response curves are plotted. External excitation frequency is applied
to the first mode and responses are calculated for the first and second modes. Finally
stability analysis is performed and the borders are drawn.
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