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Abstract – In this study, nonlinear transverse vibrations of a tensioned Euler-Bernoulli 
beam resting on multiple supports are investigated. The immovable end conditions due 
to simple supports cause stretching of neutral axis and introduce cubic nonlinearity to 
the equations of motion. Forcing and damping effects are included in the analysis. The 
general arbitrary number of support case is investigated and 3, 4, and 5 support cases 
analyzed in detail. A perturbation technique (the method of multiple scales) is applied to 
the equations of motion to obtain approximate analytical solutions. 3:1 internal 
resonance case is also considered. Natural frequencies and mode shapes for the linear 
problem are found for the tensioned beam. Nonlinear frequencies are calculated; 
amplitude and phase modulation figures are presented for different forcing and damping 
cases. Frequency-response and force-response curves are drawn. Different internal 
resonance cases between modes are investigated.
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1. INTRODUCTION

Transverse vibrations of beams are of importance in engineering systems and 
investigated in detail. A literature survey up to 1979 is done by Nayfeh and Mook [1]. 
Nonlinear free vibrations of multispan beams on elastic supports were studied by 
Lewandowski [2] using dynamic stiffness method to find frequencies and nonlinear 
modes of vibrations by considering effects of support flexibility on the frequency 
amplitude relations. Özkaya [3] discussed the effects of different end conditions for 
beam-mass systems. More recent works on this type are due to [4-16]. These studies 
include restrained beams [4, 5], in-span support [6,7], different boundary conditions for 
nonlinear vibrations [8-10], stepped beam systems using artificial neural networks[9] 
and finite element methods [12], single, multiple mass on simply supports [13-16], and 
non ideal support cases for three different simply supported beams [16], infinite mode 
analysis was performed [17]. Nonlinear vibrations and 3:1 internal resonances on 
multiple supports were investigated and excitation frequency-frequency response curves 
drawn for different support numbers [18] and Tekin et al. studied on three-to one 
resonance in multi stepped beam systems [19]. For slightly curved beams with 
stretching, one may refer to Rehfield [20]. There are also some studies about axially 
moving beams composed of viscoelastic materials [17-23]. Beams simply-supported in 
span were discussed and frequency response functions are determined [23]. Varadan et 
al. [24] studied nonlinear behavior of a beam in bending with immovable ends for 
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various loadings and edge conditions. The authors concluded that it was enough to 
consider only the nonlinearity arising from the axial force in the nonlinear analysis of 
beams with immovable ends since the hardening effect due to axial force predominates 
over that resulting from the use of an actual nonlinear expression for curvature. Da Silva 
[25] derived nonlinear equations for a class of inextensible flexible multibeam 
structures having arbitrary cross section varying along its span and also having supports 
and lumped masses. Cheng et al. [26] investigated nonlinear random response of 
internally hinged beams using finite element method. Main and Jones [27, 28] 
formulated exact analytical solutions for free vibrations of tensioned beams with an 
intermediate viscous damper and a viscous damper attached transversely near a support 
using dynamic stiffness method to obtain characteristic equations for both clamped and 
pinned supports. Mazzilli et al. [29] constructed nonlinear normal modes and nonlinear 
multi modes using the method of multiple scales for a beam with uniformly distributed 
axial and a thrust force and compared with finite element method simulations.

In this study, nonlinear transverse vibrations of a tensioned Euler–Bernoulli beam with 
multiple simple supports are considered. The beam is stretched during vibration due to 
immovable supports. This introduces cubic nonlinearity to the equations of motion. 
Transverse forcing and damping are also included in the problem. The equations of 
motion are derived for general case: arbitrary number of supports, and then solved for 3, 
and 4 support cases by using the method of multiple scales. Natural frequencies are 
calculated and mode shapes are presented. The effect of support number on the natural 
frequencies is investigated for the nonlinear vibrations. Amplitude and phase 
modulation relations are presented for different forcing and damping cases. 3:1 internal 
resonance cases are investigated between different modes of vibration.

2. EQUATIONS OF MOTION

Figure 1. Tensioned beam on multiple simple supports.

For the system shown in Fig. 1, In Figure 1, *
1mx   denotes location of the mth support 

and *
1mw  denotes the transverse displacement of the beam section between supports m

and m+1. L is the length of the beam. t* is the time. The total number of supports is n. 
A is the mass per unit length, EA is longitudinal rigidity, EI is flexural rigidity and P is 
the axial tension force on the beam. The Lagrangian can be written as follows
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where dot denotes derivative with respect to t* and prime denotes derivative with 
respect to x*. The first integral is the kinetic energy of the beam section between any 
successive supports. The second integral is the elastic energy in bending, the third 
integral is the elastic energy in extension due to stretching of the neutral axis and the 
last one is the elastic energy due to axial tension. Applying Hamilton’s principle and 
performing the necessary algebra, the equations of motion and boundary conditions for 
the general case for the tensioned beam in dimensional form is obtained as follows
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The equations are made dimensionless using the following definitions
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where R is the radius of gyration of the beam cross-section with respect to the neutral 
axis. Substituting the dimensionless parameters into the equations of motion yields
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3. METHOD OF MULTIPLE SCALES

The method of multiple scales will be applied to the partial differential equation 
system and boundary conditions directly. There is no quadratic non-linearities, that’s 
why one can write an expansion of the form

......)T,T,x(w)T,T,x(w);t,x(w 203,1m
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where  is a small book-keeping parameter representing that the deflections are small. 
This procedure models a weak non-linear system. T0=t and T2=2t are the fast and slow 
time scales. Here only the primary resonance case is considered. The forcing and 
damping terms are ordered as shown below so that they are included in the cubic order 
of expansion,  2 , 1

3
1   mm FF  , the time derivatives are written as
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equations of motion and boundary conditions at different orders as follows

Order ():
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Solution of the first order of expansion gives natural frequency values and a solvability 
condition is obtained from the second order of expansion.

3.1. Exact Solution to the Linear Problem

For Eq. (8) one can assume solutions of the form for any beam segment
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where cc stands for complex conjugate of the preceding terms. Eqs. (7) and (9) give
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The solution of the equations can be sought by assuming the following shape function 
for any beam segment
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Frequency equations can be obtained when the boundary conditions are applied.

3.2. Approximate Solution to the Non-linear Problem

Solution of nonlinear Eq. (8) gives corrections to the problem. They will have a 
solution only if a solvability condition is satisfied as explained in reference [30]. The 
secular and nonsecular terms are separated to find the solvability condition by assuming 
a solution of the form

cc+)T,T(x,W+  )eT(x,=w 201+m
Ti

21+m1,3+m
0 (12)

and inserting it into Eq. (8), the terms related with secularities are discarded. Here 
 201 ,, TTxWm  stands for the solution related with non-secular terms. One obtains
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Assuming that excitation frequency is close to one of the natural frequencies of the 
system as shown below
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where  is a detuning parameter of order 1, the solvability condition for Eqs. (13) and 
(14) is obtained as follows

0fe
2

1
AAb

2

3
)AAD(i2 2Ti22

2   (16)

where fdxYF,bdxY1,dxY
1r

r

1r

r

1r

r

η

η

1r1r

n

0r

2
η

η

2
1r

n

0r

η

η

2
1r

n

0r

 











. The complex 

amplitude A in Eq. (16) can be written in terms of a real amplitude a and a phase 
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Then amplitude and phase modulation equations can be obtained as follows
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where,   2T . Eq. (18) will be solved for steady-state case in the next section and 
variation of nonlinear amplitude with forcing will be discussed.

4. NUMERICAL RESULTS

In this section numerical examples for frequencies will be presented for different 
cases. Firstly, the linear natural frequencies for different tension forces and support 
locations () will be calculated. Then, the non-linear frequencies for free, undamped 
vibrations will be calculated. For this case, by taking =f= =0, one obtains

D2a=0 and a = a0  (constant) (19)

from Eq. (19). Here a0 is the steady-state real amplitude. The non-linear frequency is 
2

01n1 aωθDωω  (20) 

where ω/b)16/3(λ 2  is the correction coefficient due to nonlinear terms. Up to the 
second order of approximation, the non-linear frequencies have a parabolic relation with 
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the maximum amplitude of vibration. The linear frequencies and nonlinear correction 
terms for the first five frequencies are presented in Table 1 for 3 support case, in Table 2 
for 4 support case for different axial tension values. The effects of locations of supports 
and axial tension are given. For the same support locations, the tension increases the 
frequencies, as expected, as shown in Table 1. For a given value of tension, the effect on 
the frequencies at different modes varies depending on the location of support. As the 
support is moved to the center of the beam, the frequencies increase in the first modes 
for all tension values. In other modes, it depends on the location of the node and 
closeness of the support to the node.

Table 1. The first five frequencies and corrections due to nonlinear terms for vp=1, 10 
and different values for three support case.

Table 2. The first five frequencies and corrections due to nonlinear terms for vp=1, 10 and
different values for four support case.

Nonlinear frequency versus amplitude curves are plotted in Figs. 2-3 for vp= 1, 10
respectively. In these figures, the variation of nonlinear frequency is plotted for three-
support case for the first mode when =0.1, 0.2, 0.3, 0.4 and 0.5. Nonlinearities are of 

vp       
0.1 18.235343 58.671204 122.572995 210.121541 321.332650 1.863198
0.3 26.743873 86.548540 139.217694 204.494168 339.221550 3.2973571.00
0.5 39.975291 62.044961 158.412881 200.288248 355.805407 7.310198
0.1 40.282610 91.944202 161.705195 252.596838 365.883295 0.762287
0.3 53.251780 125.653101 177.151732 244.979963 384.280263 1.58644610.00
0.5 74.205035 91.264311 201.812027 238.892053 402.209843 4.090697

vp        
0.2 23.000017 74.190483 155.088058 265.891120 406.559884 2.370243
0.3 28.362907 92.699965 194.072026 321.310065 403.423882 3.114322
0.4 36.459731 117.944906 182.802245 274.384326 451.627198 4.433622
0.5 48.759392 104.552386 180.798089 306.735884 396.611039 6.888531
0.6 58.472939 89.277249 199.013802 282.991786 417.120754 7.763814
0.7 47.640061 121.011061 163.836619 291.755537 454.602796 3.980270
0.8 37.611300 105.905053 207.229104 301.928783 385.695187 2.542881

0.1

0.9 30.814771 85.704355 169.469074 282.126340 423.412296 1.844953
0.4 39.723634 128.254623 150.488184 272.056753 462.242046 4.245237
0.5 52.993323 136.331770 177.459798 334.512733 415.990173 6.402350
0.6 75.163601 123.969190 189.081660 285.850006 459.035825 11.387395

1.00

0.3

0.7 82.167472 134.202371 160.811222 307.943490 470.094119 12.710612
0.2 46.578915 108.874884 195.279228 309.143078 451.694780 1.067535
0.3 54.033760 129.789552 236.662486 365.622080 441.079562 1.552245
0.4 64.892609 157.928266 215.694876 315.984284 497.691033 2.415834
0.5 80.879356 134.334602 220.656272 348.060667 439.195150 4.057833
0.6 90.058699 119.213991 238.239592 324.455643 459.663458 4.405195
0.7 73.090648 160.342677 197.881535 333.011392 500.575273 2.386336
0.8 60.153227 140.755204 248.819925 343.775104 426.082274 1.509860

0.1

0.9 51.352917 117.829483 207.654395 323.956005 467.646583 1.028337
0.4 67.060424 166.398950 185.310096 314.701280 507.952437 2.372516
0.5 83.566988 174.401463 218.006961 377.578547 457.464405 3.936503
0.6 110.758293 162.739537 222.041658 326.537094 504.776860 7.439908

10.00

0.3

0.7 118.361161 172.726353 192.733377 348.837860 516.101396 8.254400
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hardening type. As the third support is located close to the midpoint the frequencies 
increase which means the beam becomes stiff. In Figs. 2-3, vp values changed between 1 
and 10, an increase in vp caused an increase in nonlinear frequencies. The behavior in all 
figures is of hardening type. In Figs 4 and Figs. 5, four-support case and five-support 
cases are shown respectively for vp= 1, 10. Again the behaviors are of hardening type.
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and for 0.1, 0.3 and 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

values.

At the steady state, a and  become zero. The frequency detuning parameter is as 
follows

2

22

222

μ
a4ω

f

ω

ba

16

3
σ   (21)

For three-support case, frequency response curves, are plotted in Fig. 6 for vp=1, 
respectively. This term is a measure for nearness of the forcing frequency to the natural 
frequency. In all figures f=1, µ=1 are assumed. In Fig. 6 for vp=1, vibration amplitudes 
decrease as the support becomes closer to the midpoint and the behavior is of hardening 
type. Maximum vibration amplitude is obtained when σ>0 for all mid support locations 
but at different σ values. Their maxima are obtained at lower frequencies when the 
support location changed towards ¼ of the beam, then it is obtained at higher 
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frequencies when the support is moved towards midpoint. The jump region becomes 
smaller as the mid support is located towards middle of the beam. Comparison of Fig.6
shows that, maximum vibration amplitude is obtained at higher frequencies when the 
support location is close to the ends or midpoint. In Figs. 7-8 and in Fig.9 the curves are 
shown for four-support and five-support cases respectively. The behavior is of 
hardening type in all figures and tension decreases the jump region.
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Figure 6. Forcing frequency-amplitude variation for 
vp=1 and for different  values.
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Figure 7. Forcing frequency-amplitude variation for vp= 1 
and for 0.1 and 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

values.
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Figure 8. Forcing frequency-amplitude variation for
vp= 10 and for 0.1 and 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9 values.
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Figure 9. Forcing frequency-amplitude variation for vp= 1 
and for 0.1, 0.3 and 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

values.

5. INTERNAL RESONANCE AND STABILITY

In this section, 3:1 internal resonance case among natural frequencies will be 
investigated. The solution was carried out for the three-support case only. The following 
detuning parameters were defined,

=1+2(T2), 2=31+2(T2) (22)

The ratios of natural frequencies at different modes for different vp values are plotted in 
Figs 10, 11. 3:1 internal resonances between 1, 2, 3, 4, 5 are discussed in these 
figures and support location necessary for internal resonances are presented. This 
resonance is possible for vp=1 and 5, it is not possible for vp=10. In Fig. 10, for vp=1, 
when the mid support is located about =0.34, 3:1 internal resonance is possible for ω2/
ω1. The effect of mid support is slightly increasing in the interval =0-0.32. Replacing 
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the support towards middle of the beam decreases frequency ratio continuously >0.32. 
3:1 is not possible for ω3/ ω2. Similarly 3:1 internal resonance is possible for ω4/ ω2

around =0.23 and =0.38. In all curves, up to a specific support location there is very 
slight effect (ω2/ ω1, =0-0.30), (ω3/ ω2, = 0-0.22), (ω4/ ω2, =0-0.18), (ω5/ ω3, =0-
0.18). In Fig. 11, for vp=5, 3:1 internal resonance is not possible for ω2/ ω1. 3:1 internal 
resonance is possible for ω4/ ω2 around =0.21, =0.40 and =0.50. In some curves, up 
to a specific support location there is a very slight effect (ω3/ ω2, =0-0.20), (ω5/ ω3, 
=0- 0.15). In Figs. 12, 13, the effect of axial tension is depicted for single frequency 
ratios. Variation of ω2/ω1 with for different vp values is depicted in Fig. 12. Increasing 
vp values decrease the frequency ratio for all mid support locations for approximately 
. 3:1 internal resonance is possible for vp=0.1,0.5 and 1 at  but no 3:1 
internal resonance is possible for vp=10. Variation of ω4/ω2 with for differentvp

values is depicted in Fig. 13. No 3:1 internal resonances is possible for ω4/ω2 for vp=10. 
For vp=0.1, 0.5 and 1, 3:1 internal resonances is possible about 0.24 and 0.38. No 3:1 
internal resonances is possible for ω3/ω2 and ω5/ω3 for vp values between 0.1 and 10

Figure 10. Ratios of different frequencies for vp=1. Figure 11. Ratios of different frequencies for vp=5.

Figure 12. Variation of ω2/ω1 with for differentvp values. Figure 13. Variation of ω4/ω2 with for
different vp values.

Under the assumption of three-to-one internal resonances, the mode directly excited 
(1) and indirectly excited through internal resonance (2) will survive and all other 
modes decay over time due to the damping. The amplitudes can be written as follows

―  ω2/ω1

- -  ω3/ω2

…  ω4/ω2

.-.- ω5/ω3

―      vp=0.1
- - -    vp=0.5
-.-.     vp=1
….     vp=5
-..-..   vp=10

―      vp=0.1
- - -    vp=0.5
-.-.     vp=1
….     vp=5
-..-..   vp=10

―  ω2/ω1

- -  ω3/ω2

…  ω4/ω2

.-.- ω5/ω3
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Inserting this into the O(3), one obtains
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Solution of the equations at this order is as follows
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The solvability conditions can be calculated as follows,
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The complex amplitudes can be written in polar form
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One finally obtains frequency modulation equations for steady state solutions, 
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By evaluating the eigenvalues of the jacobian matrix, stability can be 
determined. Eigenvalues should not have positive real parts to maintain stability.
External excitation frequency response graphs are given in Figs. 15, 16 for 
1=29.613795, 2=8.16346, =0.075 and f=1 for three-support case (3:1 internal 
resonance: 2 /1= 3.0027). External excitation frequency is applied to the first mode 
and responses are calculated for the first and second modes. The second mode is 
activated for   0.The frequency amplitude response curves are shown in Figs. 17, 18
for 1=29.613795, 2=88.921622, =0.075 and =0.2 for three-support case. As shown 
in the figures, different forcing amplitudes are applied to the first mode, the second 
mode amplitude is determined. In these figures vp=1 and η=0.344. The parameters 
defined in Eq. (22) and Eq. (27) and used here are =0.0802, b1=41.2196, b2=59.4933, 
b3= - 21.5592
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Figure 14. Forcing frequency-1st mode amplitude 
variation for v0=1 and 0.075
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Figure 16. Forcing amplitude-1st mode amplitude 
variation for v0=1 and 0.075.
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variation for v0=1 and 0.075.

6. CONCLUDING REMARKS

The transverse vibrations of a tensioned Euler-Bernoulli beam having multiple 
supports are investigated. The non-linear equations of motion including stretching of the 
neutral axis due to immovable end conditions are derived. The method of multiple 
scales is applied to obtain approximate solutions. Exact solutions and numerical values 
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for natural frequencies are given for linear problem. For the non-linear problem, 
correction terms to linear problem are obtained. Non-linear free and forced vibrations 
are investigated in detail. The effects of the positions of supports and axial tension are 
determined. The corrections increase as the number of supports increase and natural 
frequencies increase always. Stretching of the neutral axis causes a non-linearity of 
hardening type. For forced and damped vibrations, since the non-linearity is of 
hardening type, the frequency-response curves are bent to right, causing an increase in 
the multi–valued regions. When support number is increased, the multi–valued regions 
and maximum amplitude decrease. Then 3:1 internal resonances are investigated. 
Support locations and tension values producing internal resonances for three-support 
case are determined. No 3:1 internal resonance is possible for ω3/ω2 and ω5/ω3 for vp

values between 0.1 and 10 For other cases, it is possible for some values. Frequency-
response and force-response curves are plotted. External excitation frequency is applied 
to the first mode and responses are calculated for the first and second modes. Finally 
stability analysis is performed and the borders are drawn.
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