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Abstract- For a hard flying objector contacts with the surface of fluid, there exists a 
critical contact angle between the flying direction and the surface direction. When the 
actual contact angle is less than the critical angle, the flying objector will get additional 
moment in flying direction and be rebounded up to tens grades. This critical angle is 
determined by the flying velocity and elastic constants of fluid. These phenomena are 
named as ricochet which essentially is due to the dynamic pressure of the fluid acting 
upwards on the flying objector to overcome its gravity force. Although the skipping of a 
flat stone on water surface is well known practices, the essential theoretic interpretation 
is not suitably formulated. In this research, it is shown that the fluid has two typical 
deformation modes: one is orthogonal rotational deformation (which is related with 
conventional contact), another is orthogonal rotation with intrinsic volume expansion. 
For the first kind of deformation, the dynamic pressure is inward direction, so the 
objector will sink into the fluid. However, for the second of deformation, the dynamic 
pressure is upward direction, so the flying objector will be raised up. It is this 
mechanism that produces the ricochet phenomenon. In this paper, the dynamic stress is 
determined by the fluid deformation. Then the contact condition equations are used to 
establish the related phenomenon. Based on these formulations, the critical angle is 
expressed by the flying velocity, mass and the fluid viscosity parameters. The related 
mechanic equations are formulated also. These results may promote the researches on 
the dynamic contact problem with bifurcation, such as ricochet and/or emerging.   
Keywords- Critical angle, ricochet, dynamic contact, dynamic stress, local rotation, 
intrinsic strain, rational mechanics 
 

1. INTRODUCTION 
 

For a hard flying objector contacts with the surface of water in near surface tangent 
direction, the flying distance of objector (by means of several rebounds) is bigger than 
the theoretic distance calculated by the initial velocity of the flying object. This 
phenomenon can be observed by throwing a near flat small stone along the river surface. 
It can be seen that when the stone contacts with the water surface in small angle it can 
fly a much longer distance than normal case and be bounced up several times. There 
exists a critical angle between the flying direction and the surface direction. In 
mechanics, this phenomenon is named as ricochet [1-2]. Until now, its theoretical 
formulation is still been required. This topic plays an important role for high-velocity 
contact problem in theoretic sense.  

For this topic, the papers [1] and [2] give a good introduction. The resent situation 
can be found in the review paper [3] and others [4-6]. As the dynamic contact surface 
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behaviour is highly non-linear, the problem is extremely complex and difficult to solve 
analytically. The central problem is the dynamic interaction process in the contact 
surface. For a hard flying objector, the dynamic contact feature is mainly controlled by 
the water deformation feature which is determined by the water flow near the contact 
surface. 

Based on the point of rational mechanics, the water will suffer large deformation 
and rotation while the hard flying objector can be viewed as a non-deformable body. For 
large deformation and rotation problems, there are several theoretic formulas. The 
widely accepted one is the strain defined on Finger-Truesdell polar decomposition 
theorem of deformation gradient [1]. The main problem for using this strain definition is 
how to determine the unit orthogonal rotation tensor. As the rotation plays an important 
role in this kind of contact problem, the problem cannot be solved by strain defined 
without rotation consideration. 

This research shows that the strain defined by Chen Zhida based on his S-R additive 
decomposition formula of deformation gradient [7-14] can be used to solve this kind of 
contact problems. For this purpose, the paper introduces the related equations of 
deformation and rotation for fluid near contact surface. Finally, it shows the theoretic 
formula of the critical angle determined by the flying velocity and elastic constants of 
water.  
 

2. STRAIN DEFINITION 
 
Based on the concept of point set transformation, Chen Zhida introduces the concept 

of points set transformation between original configuration and present configuration of 
continuum [7-10]. Taking co-moving coordinators defined by original configuration, the 
deformation of medium can be expressed by base vector transformation tensor  
which is defined as: 

i
jF

0i
j j ig F g=                              (1) 

Where,  and ig 0
ig  are base vectors for present configuration and original 

configuration, respectively. The transformation tensor can be expressed by the gradient 
of displacement as following: iu

i i
j j

F u i
jδ= +                            (2) 

Where, i

j
u  express the covariant differentiate of displacement fields;  is 

Kronecher delta. 

i
jδ

Unlike elastic deformation (where the deformation mode is expressed as the 
addition of a symmetrical stretching and an unit orthogonal rotation), for water under 
high-velocity impact, the cracking or bubbling deformation mode[11-12] is expressed as: 

1(cos )i i
j jF S Rθ −= + i

j                             (3) 

Where, the related items are: 
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1 1( ) ( 1)(
2 cos

i i j i k
j j i

S u u L L )i
k j jδθ

= + − − +                         (4) 

1 sin 1(cos ) ( 1)( )
cos cos

i i i i k i
j j j k j jR L L Lθθ δ δ

θ θ
− = + + − +                    (5) 

cos (
2sin

i i
j j

)j

i
L u uθ

θ
= −                              (6) 

2 1 2 2 2 3 2 3 1

2 1 3 2 1 3

1(cos ) 1 [( ) ( ) ( )
4

u u u u u uθ − = + − + − + − 2 ]             (7) 

Here, the  is the intrinsic strain tensor; i
jS i

jR  is an unit orthogonal rotation tensor; 
i
jL  is the rotation direction tensor; θ  is the local rotation angular. 

 
3. CONTACT EQUATIONS FOR RICOCHET 

 
For the water under high velocity objector impact, the intrinsic relation among 

material elements is broken down in some scales. This can be proven by the splashing 
and bubbling near the contact surface. Hence, as an idea simplification, the intrinsic 
strain of water under high velocity impact surface can be approximated as being zero. 
This condition is expressed as: 

0i
jS = , on high velocity impact surface                 (8) 

This means that, on high velocity impact surface, the deformation tensor is: 
1 ( )

cos
i
jF Ri

j θθ
=                                 (9) 

Where, )(~ θi
jR  is an unit orthogonal rotation tensor with rotation direction on the contact 

surface normal and intrinsic rational angle θ . 
Taking the water surface as  plane, the objector flying direction on  

direction, and the  on the depth direction of water. For a flat flying objector with 
contact surface area A and velocity , if ricochet phenomenon is produced, the shear 
component of fluid local velocity gradient tensor is expressed as: 

),( 21 xx 1x
3x

0V

1
0

2 cosVV
x L

α∂
= ⋅

∂
,  others are zero                     (10) 

Where, α  is the impact angular between the objector flying direction and the water 
surface direction;  is a suitable characteristic length parameter. It defines the distance 
between the contact surface forced flow region and the undisturbed water region on the 
contact surface direction. 

L

αcos0V  is the water flow velocity on surface direction at the 
contact surface. Here, the complex non-linear flow is simplified in some extent for 
simplicity.  

Based on Equ.(7), the local intrinsic rotation angle is determined by the flying 
velocity and contact angle α  between the surface direction and the velocity direction 
by the following equation:  
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2 2
0

2

cos1 1
cos

V
L

α
θ

⋅
= +                            (11) 

Based on the definition, the local rotation direction is on the water surface normal 
direction (  . direction).  3x

For water flow, the classical stress on contact surface is defined as: 
0 2ij ij ijpσ δ με= − +                                (12) 

Where,  is the water initial pressure; 0p μ  is the viscosity of water. 
By Eqs.(4) and (8), the classical strain rate is found out to be: 

1 1( ) ( 1)(
2 cos

i j i k
ij k j jj i

u u L L )iε δ
θ

= + = − +                   (13) 

As the water intrinsic local rotation direction is on the  direction, the only non-zero 
component is: 

3x

33
1 1

cos
ε

θ
= −                                      (14) 

The graze condition is that the dynamic pressure on the contact surface is bigger 
than the gravity force of the object. Based on Equs.(11), (12), and (14), this condition is 
expressed by equation: 

0
12 1

cos
Mgp
A

μ
θ

⎛ ⎞− − ≥⎜ ⎟
⎝ ⎠

                              (15) 

That is: 
2 2

0
02

cos2 1 2V Mg p
L A

αμ μ⋅
⋅ + ≥ + +                       (16) 

Where, M  is the mass of objector; the g  is the gravity constant. It says that, for the 
objector, the velocity must be high enough and have a small incident angle. 

This gives out the critical impact angle cα  as: 
2

0
0

1cos 1 ( ) 1
2c

L Mg p
V A

α
μ

⎛ ⎞
= ⋅ + + −⎜

⎝ ⎠
⎟                      (17) 

For cαα ≤ case, the ricochet phenomenon will be produced. The higher is the impact 
velocity, the bigger the critical angle is. 

On the other hand, the physical requirement for the existence of such an angle is: 

11)(
2
11

2

0
0

≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⋅ p

A
Mg

V
L

μ
                         (18) 

So, to produce a ricochet, the impact velocity condition can be obtained as: 
2

0
11 ( )

2
MgV L p
Aμ

⎛
≥ ⋅ + + −⎜

⎝ ⎠
0 1⎞
⎟                          (19) 

Hence, the ricochet condition is formulated by the Equs.(17) and (19). So, the 
minimum ricochet velocity can be defined as  by equation: cV

2

0
11 ( )

2c
MgV L p
Aμ

⎛
= ⋅ + + −⎜

⎝ ⎠
1⎞

⎟                          (20) 
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Summing up above results, the production condition of ricochet for stone-skipping 
is: 

cV V≥  and cα α≤                             (21) 
Where, the critical velocity  is completely determined by the fluid mechanic features 
(static pressure and viscosity), the flying objector mass and its geometrical factors 
(contact surface area and characteristic length). For the velocity bigger than the critical 
value, the critical incident angle 

cV

cα  is determined by fluid features, objector geometry, 
and the incident velocity. The only needed parameter to be determined by experiments 
or a set of complete dynamic motion equations is the characteristic length . Now, it is 
time to consider the graze. By experimental observations, the impact angle is near 
invariant for ricochet process, so it is reasonable to calculate the velocity loss for each 
graze as: 

L

2 2

2

2 cos1 1A VV
M L
μ α sinα

⎛ ⎞
Δ = ⋅ + − ⋅⎜⎜

⎝ ⎠
⎟⎟                      (22) 

Hence, the numbers of grazes can be determined by using the Eqs. (17)-(22). 
Observing the Eq.(22), when the , the critical angle tends to 90 degrees. For 

water, it is not true. This problem is caused by the simplification that omitting the 
thermo effects and simplifying the fluid feature. In fact, for very high impact velocity, 
the compressibility of water must be taken into consideration. At the same time, the 
shear in depth direction should be taken into consideration. Further more, the local 
rotation direction is not on the normal direction of water surface, although it may be 
near this direction.  

0V →∞

This research shows that: there is an instability region between the ricochet and 
conventional impact. Therefore, to formulate a dynamic problem, only focusing on the 
dynamic equations are not enough. The dynamic boundary problems must be taken into 
consideration seriously. 
 

4. CONCLUSION 
 
Based on the concept of rational mechanics, the continuous of deformation does not 

mean the continuous of classical stress. Based on the condition that the intrinsic 
stretching strain should be zero for water, the fluid deformation near the contact surface 
is formulated. So, the related stress condition is formulated for ricochet. The results 
show that: the critical velocity  is completely determined by the fluid mechanic 
features (static pressure and viscosity), the flying objector mass and its geometrical 
factors (contact surface area and characteristic length). For the velocity bigger than the 
critical value, the critical incident angle 

cV

cα  is determined by fluid features, objector 
geometry, and the incident velocity.  

However, to determine the characteristic length parameters, a detailed fluid flow 
region should be determined exactly or experimentally. This problem should be solved 
by further research. Here, the result is only a simplified scheme. Furthermore, the 
instability problem is discussed for high velocity impact on elastic-fluid materials. 
These results may cause the interest on ricochet for its theoretic significance on 
formulating dynamic boundary condition. Anyway, these topics play important role in 
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theoretic sense and actual applications. 
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