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Abstract- This paper applies the variational approach to the relativistic oscillator. In 
order to effectively deal with the irrational term, an ancient Chinese mathematics is 
introduced. Comparison of the obtained result with the numerical one elucidates the 
efficiency of the present treatment.  
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1. INTRODUCTION 
 

In this paper, we consider the following relativistic oscillator: 
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with initial conditions ( ) ( ) 00,0 =′= uAu .  
Recently many analytical methods were proposed to solve various nonlinear oscillators, 
such as  the parameter-expansion method[1-3], the energy balance method[4,5], the 
harmonic balance method[6,7,8], the homotopy perturbation method[9], He’s 
amplitude-frequency formulation[10,11], a complete review on analytical approach to 
nonlinear oscillators was given in Ref.[12]. In this paper, we will couple the variational 
approach[13] with an ancient Chinese mathematics called the He Chengtian's 
interpolation[14] to Eq.(1).   
 

2. HE’S VARIATIONAL APPROACH 
 

The variational approach to nonlinear oscillators was first proposed by Ji-Huan 
He[12,13], and widely used to search for periodic solutions of various nonlinear 
oscillators[16-17]. According to Ref.[13], a variational principle for Eq.(1) can be easily 
established, which reads  
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where T is the period of the nonlinear oscillator. 
We assume that its approximate solution can be expressed as: 
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tAu ωcos=                                  (3) 

where A and ω  are the amplitude and frequency of the oscillator, respectively. 
Substituting Eq.(3) into Eq.(2), and setting /dJ dA 0= , we can obtain an inexplicit 
amplitude-frequency relationship of Eq.(1). In order to obtain a simple 
amplitude-frequency relationship, an ancient Chinese mathematics is adopted.  
 

3. HE CHENGTIAN'S INTERPOLATION 
 

For convenience we set  

dtuy
T 24/
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Substituting (3) into (4) leads to 
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Hereby we will introduce He Chengtian's interpolation[14] to approximate the above 
integral. He Chengtian's interpolation, an ancient Chinese mathematics, was developed 
to the max-min method[18-22] for nonlinear oscillators.  
By a simple analysis, we know that 
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We rewrite Eq.(6)in the following form in order to apply He Chengtian's interpolation 
easily. 
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According to He Chengtian's interpolation, we obtain  
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where m and n are positive parameters, k=n/(m+n). 
We, therefore, can approximate y in the form  
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From Eq.(9) we can easily obtain 
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From Eq.(5),we know that 
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Comparing Eq.(11) with Eq.(12), we obtain  

ωω
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                             (13) 

from which the value of  in Eq.(9) can be determined, which is k

2

4
π

=k                                   (14) 

We obtain the approximate value of : y
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Substituting tAu ωcos=  into Eq.(2), and making the resultant equation stationary 
with respect to A , we obtain the following equation                    
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The frequency-amplitude relationship is, therefore, obtained:   
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The approximate solution can be expressed in the form: 
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When comparing with the exact solution, we find Eq.(19) is valid for large A, error 
arises for small A. This is due to the fact that we identify k in Eq.(9) approximately for 

. However, we can identify k in Eq.(9) approximately for the case when  A→∞ 0.A→
For small A, Eq.(5) can be approximated as follows 
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Expanding Eq.(9) for , we have  1A <<
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y kAπ π 2 )kA
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Comparison of Eq.(20) with Eq.(21)  results in k=1/2. Thus, for small A, Eq.(9) can be 
approximated as  
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By the same solution procedure as illustrated above, we obtain     
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The frequency-amplitude relationship reads  
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Eq.(24) agrees well with the exact solution for the case 1A << .  
 

4. HOMOTOPY MATCHING 
 

Eq.(18) is valid for the case when ; while Eq.(24) is valid for the case 
when . In order to match the both cases  and , we construct the 
following homotopy  

A→∞
0A→ 0A→ A→∞
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Now considering the case when A=1, we have exact frequency, which is 0.8736ω = . 
From this relationship, we can identify α  as follows 

4962.0=α                                   (26) 

Finally we obtain the following result  
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Fig. 1 shows that the approximate solution, cosu A tω= , agrees very well with the exact 
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solution for all A>0. 

 
Fig.1 Comparison of the approximate solution, cosu A tω= ,with the numerical solution. 
Continuous line: exact solution; dashed line: approximate one. 
 

5. CONCLUSIONS 
 

In this paper we successfully incorporate the He Chengtian's interpolation into the 
variational approach. the He Chengtian's interpolation leads to thresholds of the 
frequency of the oscillators, the homotopy technology is then used to match the two 
thresholds, and the solution is valid for all solution domain.  
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