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Abstract- The helix geometry model of 3D braided composites has been presented, 
which truly reflects the braided manner and coincides with the actual configuration of 
the braided composites. The longitudinal tensile stress-strain relationships and the 
strength of 3D braided composites under the tension loading have been predicted by a 
finite multiphase element method (FMEM) based on the helix geometry model. 
Comparisons are conducted for those from the present model and experiment. The 
results obtained from the present model are supported by the experimental data. The 
numerical results show that the braiding angle has a significant influence on the strength 
of 3D braided composites. 
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1. INTRODUCTION 
 

The utilization of 3D braided composites has developed rapidly in the past years 
for its excellent mechanical properties, such as high specific strength, high specific 
stiffness, high through-thickness strength and impact resistance, etc. Therefore, 3D 
braided composites have been used widely in the aerospace, automobile, marine and 
biomedical, etc. The 3D braided composites can be regarded as an assemblage of 
representative volume element (RVE) [1,2] that captured the major features of the 
underlying microstructure and composition in the material. Ma, Yang and Byun [3-5] 
first studied the effective elastic properties of 3D braided composites by using ‘Fiber 
interlock model’, ‘Fiber inclination model’ and ‘fabric geometric model’, respectively. 
Huang, Li and Sun [6-8] analyzed the strength of 3D braided composites based on 
corresponding geometry models, respectively. Wang and Wang [9] reported a mixed 
volume averaging technique to predict the mechanical behavior of three dimensional 
braided composites. Witcomb and Woo [10] gave the stress distribution of woven 
composites using the local finite element method. Zeng [11-13] predicted the stiffness, 
strength and nonlinear of 3D braided composites under the 3D mechanical loading 
based on the traditional topological model. Gu and Yu [14,15] studied the uniaxial 
strength of 3D braided composites, and showed the tensile curve within the whole strain 
range and the curves of the strength along with the braiding angle, respectively. Surya 
Kalidindi and Eric [16] developed a helix fiber cell to conduct the numerical evaluation 
of the 3D braided composite using commercial FE package I-DEAS. The interweave 
relationship and space shape within the yarns were embodied in the model. However, 
the yarn and matrix components of the RVE were modeled discretely in meshing and 

mailto:taozeng@sohu.com


 
 

T. Zeng and L. Jiang 
 

884 

this is quite time-consuming. The main purpose of the present work is to predict the 
longitudinal tensile stress-strain relationships and the strength of 3D braided composites 
under the tension loading by FMEM based on the helix geometry model. The influence 
of the braiding angle on the strength of 3D braided composites is discussed. 
 

2. FORMATION OF THE PROBLEM 
 
2.1. Unit-cell geometry  
 

A schema for the helix geometry model of 3D braided composites is shown in 
Fig.1, where a local coordinate system (x'y'z') and a global coordinate system (xyz) 
have been employed. The yarns in the helix geometry model have been curved to avoid 
the collision of yarns each other at the center of the unit-cell. 
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                 (a)                                                      (b) 
 Fig.1 A representative cell of 3D braided composites for helix geometry model  

 
It was assumed that dimensions of the unit-cell are U, V and W in the x, y and z 

directions, respectively. The yarn diameter is represented by d, and φ is the angle 
between the diagonal line of the unit-cell and the braid axis. The yarns were supposed to 
curve helix columns in this study. The center lines of the yarns are curves and the cross-
section of each yarn in XY plane is an ellipse. In order to describe the spatial location of 
the yarns and the micro-structural details of the unit-cell, the curvature and cross-section 
parameters of each yarn should be determined. The center line of each yarn in the unit-
cell is established by a parabola defined by the two yarn end points (located on the top 
and bottom surface of the cell) and the midpoint of the yarn (located on a plane parallel 
to and midway between the top and bottom surfaces), as shown in Fig.1 (a). The yarn 
center line equation in the local coordinate system can be stated as: 

 ( )2
1 2 3y =c +c x +c x′ ′ ′                                                   (1) 
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where c1, c2, c3 can be calculated by the global coordinates of the two yarn end points and the 
midpoint of the yarn. The yarn center line equation in the global coordinate system can be 
obtained through coordinate transformation. 

Let ai, bi ( i represents the yarn number) indicate the short axis and the long axis of the 
cross-section of each yarn, respectively. The ellipse parameters can be described as: 

( )
( ) ( )

i

i i

a = d 2 i=1,2,3,4

b = d 2cosγ i=1,2,3,4

⎧⎪
⎨
⎪⎩

                                             (2) 

where γi is the angle between the tangent of the yarn center-line and the braid z-axis, which is 
continuously varying over the length of the yarn. The spatial geometry formulas of the yarns 
in the unit-cell are given as: 

[ ] [ ] [ ] [ ] ( )
[ ] [ ] [ ] [ ] ( )

( ) ( ) ( ) ( )

i i i i i i i 0i

i i i i i i i 0i

i i i i

x =b cos s cos t -a sin s sin t +x i=1,2,3,4

y =b sin s cos t +a cos s sin t +y i=1,2,3,4

z =W s π -1 4 i=1,3 , z =W s π+1 4 i=2,4

⎧
⎪
⎨
⎪
⎩

          (3) 

where x0i, y0i are the space point coordinates of the yarn center lines, which can be determined 
by Eq.(1), and si, ti are defined respectively as: 

[ ] ( ) [ ] ( )
( )

i i

i

s π 4,5π 4 i=1,3 , s -π 4,3π 4 i=2,4

t =φπ 180 i=1,2,3,4

⎧ ∈ ∈⎪
⎨
⎪⎩

               (4) 

 
2.2. The finite multiphase element method 

On the basis of the cell-composition structure of 3D braided composites, a finite 
multiphase element method (FMEM) [12] has been proposed to predict the longitudinal 
tensile stress-strain relationships and the strength. The RVE is divided into a number of 
rectangular subcells as shown in Fig. 2(a). The yarn and matrix components do not need to be 
modeled discretely when the RVE is meshed. According to the material properties of the 
elements, three kinds of elements are obtained, as shown in Fig. 2(b). Let [DM], [DY] and 
[DMix] denote the material property matrix of matrix element, yarn element  and mixed 
element, respectively. The material property matrix [DMix] varies with the coordinates of 
Gauss integration points. If the integration point is in the yarn volume, the material property 
matrix [DY] is taken; otherwise the material property matrix [DM] is taken. According to the 
above helix geometry model and the design procedure of material property, a Fortran 
computer code is worked out to predict the longitudinal tensile stress-strain relationships and 
the strength of 3D braided composites accurately.  
 

mixed element yarn element matrix element 

(b) (a) 

 

 

 

 Fig.2 Discretization of a RVE:  (a) RVE  (b) three kinds of subcells  
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3. NUMERICAL CALCULATION AND DISCUSSIONS 
 

In this section, the longitudinal tensile stress-strain relationships and the strength of 
3D braided composites under the tension loading have been predicted by FMEM based on the 
helix geometry model. In order to verify the reliability of these results, comparisons are 
presented between the numerical predictions and the available corresponding measurements 
[17]. All the analyses in the present study are done for the 3D four-directional braided 
composites by the four-step 1  rectangular braiding procedures, which consisted of 12K 
T300 carbon yarns and TDE-85 epoxy resin. The mechanical properties of fiber and resin are 
given in Table 1. The stress-strain relationship and strength of 3D braided composites under 
tension loading can be computed as described in Ref. [13]. The Tsai–Wu and Von Mises 
criterion are used to predict the failure in the yarn and matrix, respectively. 

1×

 
Table 1 Mechanical properties of the component materials 

Materials E11(GPa) E22(GPa) G12(GPa) G23(GPa) μ12 μm 

Carbon fiber 230 40 24 14.3 0.25  

Epoxy resin 3.5     0.35 
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 Fig. 4 Stress-strain behavior of  3D braided 
composites

 

Fig. 3 Comparisons between the experimental 
and predicted values 

10 20 30 40 50 60
50

100

150

200

250

St
re

ng
th

 (M
Pa

)

Braiding Angle (Deg.)

 helix geometry model 

 

 

 

 

 Fig. 5 Effect of braid angle on the tension strength  

Fig.3 presents the measured and predicted tensile stress-strain curve of 3D braided 
composites under tension loading, where θ is the surface yarn braiding angle. There is a good 
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agreement between the measured and predicted tensile stress-strain in the initial elastic region. 
During the latter stage, the tensile stress-strain curve crosses the corresponding experimental 
curve and the displacement measured experimentally is higher than the theoretical prediction. 
The primary reason for the latter stage is that the experimental results under the influence of 
the equipment and surrounding environment, while the numerical calculation is assumed to 
progress under ideal conditions. Furthermore, there is not perfect adhesion between the matrix 
and the fibres in the 3D braided composites. 

Fig.4 shows the effect of the braiding angle on the longitudinal tensile stress-strain 
curve of 3D braided composites. When the braiding angle is smaller, the longitudinal tensile 
stress-strain relationships present linearity. But with the braiding angle increases, the 
longitudinal tensile stress-strain relationships demonstrate nonlinearity.  

The variation of the predicted longitudinal tensile strength of 3D braided composites 
with the braiding angle is shown in Fig.5. It can be seen that the longitudinal tensile strength 
decreases with increasing braiding angle. The influence of braiding angle on the longitudinal 
tensile strength is remarkable and the corresponding strength has a reduction of 64.3% when 
the braiding angle varies from 10° to 60°. Under tension loading, the tension failure initiates 
in the matrix elements at around 166.3 MPa (θ=26°), 149.7 MPa (θ=40°), and 120 MPa 
(θ=48.84°), respectively. 
 

4. CONCLUSION 

This paper develops corresponding Fortran computer codes based on the helix 
geometry model, through which the longitudinal tensile stress-strain relationships and the 
strength of 3D braided composites under the tension loading have been predicted.  
(i) The helix geometry model findings are compared to reported experimental findings in the 

literature and excellent results are obtained.  
(ii) The braiding angle has a significant influence on the strength of 3D braided composites 

under tension loading.  
(iii) The tension failure of 3D braided composites initiates in the matrix elements under 

tension loading.  
(iv) Future work will focus on the fatigue damage analysis of 3D braided composites 

subjected to tension-tension fatigue loading. 
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