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Abstract- By the extended homoclinic test technique, explicit solutions of the
(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation are obtained. These solutions
include doubly periodic wave solutions, doubly soliton solutions and periodic
solitary-wave solutions. It is shown that the extended homoclinic test technique is a
straightforward and powerful mathematical tool for solving nonlinear evolution
equation.
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1. INTRODUCTION

Recently many effective and powerful methods have been proposed to solve
nonlinear evolution equations, such as the inverse scattering transform [1], the tanh
function method [2], the homogeneous balance method [3], the auxiliary function
method [4], the Exp-function method [5-8] and so on.

Very recently, a new technique called "extended homoclinic test technique"was
proposed [9] and has been applied to seek periodic solitary wave solutions of integrable
equations [10,11]. In this work, we apply the technique to the (3+1)-dimensional KP
equation. New exact solutions including doubly periodic wave solutions, doubly soliton
solutions and periodic solitary-wave solutions are obtained.

2. PROCEDURES FOR SOLVING THE (3+1)D KP EQUATION

The (3+1)-dimensional Kadomtsev-Petviashvili(KP) equation reads as [12]:

Uy +6U5 +6uu,, —U. —U, —u, =0. (1)
By using Painlevé analysis we suppose
u=(@2InF), 2)

where F (X, Y, z, t) is an unknown real function.
Substituting (2) into (1), we have a Hirota bilinear equation:

(DD, -D! -D2 -D?)F-F=0. (3)
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Then, by introducing different ansatz test function F(x,y,z,t) to Eg. (3), we can

obtain a series of exact solutions to the (3+1)D KP equation (1).
(1) Suppose that the test function F(x,y,z,t) has the following ansatz:

F(X,Y,z,t) = b,e P09 4y cos[q(x + Ky + 1z + wt)] + b,ePCH+teet (4)

where by,b,,b3,p,0,k,1 and w are constants to be determined later.

On substituting (4) into (3), equating all the coefficients of different powers of
elPerkyHizeh) =1 0,1) to zero yields a set of algebraic equations. Solving the resulting
equations, simultaneously, we get

K*+1°=2(9° -p®), w=p*+0q", b1=—iqzz- (5)
4b,p

Case (1). When b, =b, =b,=b, p=iP,we have q=+2P,k*> +1>=10P*, @ =3P".
Therefore, we get a doubly periodic wave solution,

_ 2P?(8+cos[3P(x + ky + 12+ P?t)] + 9cos[P(x + ky + Iz + 9P2t)])l
(2cos[P(x +ky + 12— 3P?t)] + cos[2P(x + ky + Iz + 3P?t)]

u,(x,y,z,t)=

where b, P k,l are arbitrary real constants.
Case (I1). When b, =3b, =-b, =-b,p=P,we have q=+2P,k* +I*> =6P*, 0 =5P?.
Therefore, we obtain a periodic solitary-wave solution,

4P2[_4 + 4cosh(&)sin(y) ¥ 3sinh(&) cos(n)]
[2sinh(&) £ cos(y)]?

Ups(X,y,2,1) = , (6)
where & =P(x +ky +1z—5P?t),n = 2P(x + ky + 1z—5P°t)and k? +1? = 6P2.
(2) Let the test function F(x,y,z,t) be

F= ble—p(x+ky+lz—wt) + b2 COS[C](X + ky + |Z)] + bBep(x+ky+Iz—wt)’

where b1,b,,b3,p,q,k,| and w are constants to be determined.
By using a similar procedures to derive (5), we obtain
_ 9°b]

k% +1%> =-3p% +¢?, =2(p*+q°), b, =
P +Qq°, w=2(p"+q°), b, 4p%b,

(i). Choosing b, =b,=band p=iP,q=P,weget k’+1°=2P%,w=0,b, = +2b.
Thus, a triangle function solution to equation (1) is given as
u, =—2P?sec’[P(x +ky +12)].

(ii). Choosing b, =b, =b, =band p=iP,we have k*+1°=7P*, q=+2P, ®=6P".
Therefore we get a doubly periodic wave solution,



New Periodic Solitary-Wave Solutions 879

2P [8+cos[3P(x+ky+Iz 2P*t)]+9cos[P(x + ky + 1z + 6P t)]]
[2cos[P(x + Ky + 1z - 6Pt)] + cos[2P(x + Ky + I2)]]

5
iii).When b, =b, =—b,=-band p=P,wehave k®+I1*=P? q=+42P, w=10P°
1 2 3 p
Then, we obtain periodic solitary-wave solutions,

AP*[-4 + 4cosh(¢)sin(n) F 3sinh(&) cos(y)
[2sinh(&) £ cos(y)]?

Ug,(X,Y,2,t) =

where & = P(x + Ky + 12 —=10P?t), s = 2P(x + ky + 1z) and P is an arbitrary constant.
(3) We now suppose that the test function F(x,y,z,t) has the following ansétz:

F= ble—p(x+ky—wt) + b2 COS[Q(X +1z + /lt)] + bgep‘“ky—wt) ’

where by,b,,b3,p,0,k,1, 0 and A are constants to be determined.
By using a similar procedures to derive (5), we get

_k2 2+|2 2 _k2 2+|2 2

:—g 2q +3p2—q2,/1=—£) 2q +39° —p?, 7)

p-+q pP™+q

_G°[(k* +1*)p® ~3(p* +9°)*1b]

bApP[(K+17)+3(p% +%)Tb,

By choosing b, =b, =b, =b, we have three types of solutions to Eq. (1).

Type (i). Choosing p =iP,q=Q satisfies Q* > %PZ, we have

k2 +|2 _ (P2 _Q2)2(3Q2 _4P2) ,
P2Q2
E=P(X+ky-wt), n=QX+Ilz+it). (8)

Consequently, we obtain a doubly periodic wave solution,

2 +2Q% +4(P* + Q%) cos(&) cos(n) +8PQ sm(é)sm(n)
[2cos(&) + cos(n)]?

ug(x,y,z,t)z— €

where n, & are given by (8) and o, A are given by (7).

Solution expressed by (9) is a doubly periodic wave solution with different period about
different spatiotemporal variable (x, y,t) and (X, z, t) , respectively.

Type (ii). Choosing p=P,q=1iQ satisfies P? >3/4Q?.

Then from solution (9) we have a doubly soliton solution,
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8P? +2Q% + 4(P* + Q%) cosh(&) cosh(y) —8PQsinh(&) sinh(n)
[2cosh(&) + cosh(n)]? '

Uy(x,Y,2,1) = (10)

. 2_A2V2(4p2?_20y2
where &, are given by (8) and k* +1° =%SZPSQ)

Type (iii). Choosing p=iP,q=iQ , then from solution (9) we have a periodic
solitary-wave solution,

: P, Q are real constants.

—8P? +2Q% — 4(P? —Q?)cos(¢) cosh(z) + 8PQsin(¢) sinh()

: (11)
[2cos(&) + cosh(n)]

Uy, (X,Y,2,1) =

2 22 2 2
= %&‘E“Q); P,Q are real constants.

(4) Finally, we suppose that the test function F(Xx,y,z,t) has the following ansétz:

where &, are given by (8) and k* +1°

F=D,eP*™Y 4+ b, cos[q(x + Ky + 1z + o t)] + b,eP*+o~ |

where by,b,,b3,p,q,k,1 and @ are constants to be determined.
By using a similar procedures to derive (5), we get

2]2 2rn212 _ 2 2\21h2
q’l _ a7 [Pl =3(p”" +9°)"]b; (12)

K2 =2(q? — 2, —n2 2 b, = .
P P T g -3 a0,

Choosing b, =b, =b, =b (bis an arbitrary constant), then (12) is reduced to

2+ 2y2 4 2+ 2
k2 :2(q2_p2),|2 :_(p q )2(2p q )1w_
Pq p

_(P*+a%)Ep*+0a°)

2

Therefore, we have
p=iP,q=0Q,Q* > 4P?,

kZ — 2(P2 +Q2) |2 — (P2 +Q2)2(4P2 _QZ) W= (P2 _QZ)(BPZ _QZ)
! P2Q2 ! PZ

and
p=iP,q=iQ,Q* > P?,

k2 — 2(P2 _QZ) |2 — (P2 +Q2)2(4P2 +Q2) = (PZ +Q2)(3P2 +Q2)
! P2Q2 ! P2 '

Consequently, we obtain the following solutions,

8P? +2Q% +4(P* + Q%) cos(¢) cos(n) + 8PQsin(¢) sin(n)
[2cos(&) + cos(n)]? '

ull(X! y! Z!t) =-
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8P +2Q° — 4(P* — Q%) cos(c) cosh(z) + 8PQsin(c)sinh()

Up(X,y,2,t) = [2cos(c) + cosh(7)]?

where

sz[x+2(P2+Q2)y—(P —Q )P(fp —Q )t],

(P?+Q*)°(4P*-Q%) (P*~Q)(3P*-Q")

7 =Qlx+2(P* + Q?)y + s iy 1,
¢ = Pix+2(P* ~Q*)y - +Q2)P(fpz )y
b 27 iy s PLEQYEPTEQY) (PP +QIEP QY

P2Q2 P2

and P,Q are arbitrary real constants.

3. CONCLUSION

In this paper, the extended homoclinic test technique is applied to solve the
(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation. As a result, explicit solutions
including doubly periodic wave solutions, doubly soliton wave solutions and periodic
solitary-wave solutions are obtained, these solutions enrich the structures of exact
solutions.
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