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Abstract- Control and synchronization of chaotic systems are important issues in 
nonlinear sciences. This paper proposes an effective estimation of distribution algorithm 
(EDA)-based memetic algorithm (MA) to direct the orbits of discrete chaotic dynamical 
systems as well as to synchronize chaotic systems, which could be formulated as 
complex multi-modal numerical optimization problems. In EDA-based MA (EDAMA), 
both EDA-based searching operators and simulated annealing (SA)–based local 
searching operators are designed to balance the exploration and exploitation abilities. 
On the other hand, global information provided by EDA is combined with local 
information from SA to create better solutions. In particular, to enrich the searching 
behaviors and to avoid premature convergence, SA-based local search is designed and 
incorporated into EDAMA. To balance the exploration and exploitation abilities, after 
the standard EDA-based searching operation, SA-based local search is probabilistically 
applied to some good solutions selected by using a roulette wheel mechanism with a 
specified probability. Numerical simulations based on Hénon Map demonstrate the 
effectiveness and efficiency of EDAMA, and the effects of some parameters are 
investigated as well. 
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1. INTRODUCTION 
 

Since the pioneering work of Huber’s on chaos control in 1989 [1] and work of 
Pecora and Carroll’s on chaos synchronization [2] in 1990, control and synchronization 
of chaotic systems have been important issues in nonlinear science and attracting 
increased interests from various fields [3]. Nowadays, a wide variety of approaches 
have been proposed for control and synchronization of chaotic systems [4-8]. 

Recently, a new population-based evolutionary technique, estimation of 
distribution algorithm (EDA), has been proposed [9] as an alternative to genetic 
algorithm (GA) [10] and particle swarm optimization (PSO) [11] for continuous or 
discrete optimization problems. In EDA, a population of solutions is initialized 
randomly, which is evolved to find optimal solutions through selection, modeling, 
sampling, and replacement operation procedures. Compared with GA and PSO, EDA 
has some attractive characteristics. It samples new solutions from a probability model 
which approximates the distribution of promising solutions, and avoids premature 
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convergence and selection pressure exhibited by GA’s crossover and mutation operation. 
Additionally, the priori information about the problem structure can be captured by the 
probability model estimated during the search, which facilitating a more efficient global 
search. This paper proposes an effective estimation of distribution algorithm (EDA) – 
based memetic algorithm (MA) to direct the orbits of chaotic dynamical systems as well 
as to synchronize chaotic systems, which could be formulated as multimodal numerical 
optimization problems. Simulations based on Hénon Map demonstrate the effectiveness 
and efficiency of EDAMA, and the effects of some parameters are investigated as well. 

 
2. PROBLEM FORMULATION 

 
Consider the following discrete chaotic dynamical system: 

( 1) ( ( )), 1, 2,...,k k k+ = =x f x N
n

1N

        (1) 
where state , and  is continuously differentiable. ( ) nk R∈x : nR R→f

Let  be an initial state of the system. If small perturbation  is 
added to the chaotic system, then 

0
nR∈x ( ) nk R∈u

( 1) ( ( )) ( ), 0,1, ,k k k k+ = + = −x f x u        (2) 
where ( )k μ≤u , and μ  is a positive real constant. 

The goal is to determine suitable  so as to make  in the ( )ku ( )Nx
ε -neighborhood of the target , i.e., tx ( ) tN ε− <x x , where a local controller is 
effective for chaos control. Without loss of generality, assume that  acts only on 
the first component of , then the problem can be re-formulated as follows. 

( )ku
f

(P1): 
min ( ) tN −x x  by choosing suitable , ( )u k 0,1,..., 1k N= −      (3a) 

1 1( 1) ( ( )) ( )
. .

( 1) ( ( )), 2, ,i i

x k f k u k
s t

x k f k i n
+ = +⎧

⎨ + = =⎩

x
x

, ( )u k μ , 0(0) =x x     (3b) ≤

Let  and ( 1) ( ( )k k+ =x f x ) )k( 1) ( ( )k + =y f y  be two given chaotic dynamical systems 
with the same structure but different initial state. Chaotic synchronization by feedback 
is to select the feedback matrix ( ) n nk R ×∈K  such that ( ) ( ) 0N N− →x y , where 

 and 0 0(0) (0)= ≠ =x x y y
( 1) ( ( ))
( 1)) ( ( )) ( ) ( ( ) ( ))
k k
k k k k
+ =⎧

⎨ + = + ⋅ −⎩

x f x
y f y K y x k

         (4) 

It was regarded that chaos synchronization also can be formulated as the above 
problem [4]. Similarly, assume that feedback only acts on the first component, i.e., 

 and all other components of  are zeros. For convenience, denote 11( ) 0K k ≠ ( )kK

11( ) ( )K k K k= . Then the problem can be formulated as follows. 
(P2): 

min ( ) ( )N N−x y  by choosing suitable ( ), 0,1, , 1K k k N= −      (5a) 

1 1 1 1

( 1) ( ( ))
. . ( 1) ( ( )) ( ) ( ( ) ( ))

( 1) ( ( )), 2, ,i i

k k
s t y k f k K k y k x k

y k f k i n

+ =⎧
⎪ + = + ⋅ −⎨
⎪ + = =⎩

x f x
y
y

, ( )K k κ≤ , 0(0) (0) 0= ≠ =x x y y   (5b) 

However, (P2) does not totally equivalent to the origin problem, because 
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( ) ( )N N≠x y  will cause the two systems apart from each other eventually due to the 
sensitivity to initial state of chaotic systems, even though ( ) ( )N N−x y  is arbitrarily 
small. So we should deal with (P2) on-line at some step k ′  with , , 
when 

0 ( ')k=x x 0 ( ')k=y y
( ') ( ')k k−x y  is larger than a threshold δ . For the above problems, it needs to 

determine suitable  or ( )u k ( )K k  to minimize objective function value. Thus, from the 
viewpoint of optimization, (P1) and (P2) are both multi-dimensional constrained 
numerical optimization problems.  
 

3. EDAMA 
 

3.1. Estimation of distribution algorithm (EDA) 
In EDA, the i-th individual in the d-dimensional search space at generation t can 

be represented as ,1 ,2 ,( ) [ , ,..., ]t t t
i i i i dX t x x x= , ( 1, 2,...,i NP= , where  denotes the size of the 

population). The procedure of EDA is summarized as follows. 
NP

Step 1: Randomly initialize the population of individual for EDA, where each 
individual contains  variables (i.e., dd N= ). Repair individuals if required. 

Step 2: Evaluate the objective values of all individuals, and recode the best 
individual bestX  together with its objective value.  

Step 3: Select M  individuals from population based on the selection strategy.  
Remark: In this case, truncation selection strategy is employed by which 

individuals are sorted according to their objective values and the best M  ( ) 
individuals are selected.  

/ 2M NP=

Step 4: Build a probabilistic model based on the statistical information of the 
selected individuals in Step 3 using a learning method.  

Remark: Gaussian model with diagonal covariance matrix (GM/DCM) [9] is 
used, in which the d-dimensional joint probability distribution is factorized as a product 
of d univariate and independent normal distributions: 

1

( ) ( ; , )
d

t t
t j j

j

p x N x j

2
1
21( ; , )

2

t
j j

t
j

x

t t
j j j t

j

N x e
μ

σμ σ
πσ

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠=μ σ

=

=∏ ,     (6) 

In Eq. (6), the mean t
jμ  and standard deviation t

jσ  of the j-dimension variable 
for the t-th generation can be estimated respectively as follows: 

,
1

1ˆ
M

t t
j i j ( )

i
x

M
μ

=

= ∑ , 2

,
1

1ˆ ˆ
M

t t t
j i j j

i
x

M
σ μ

=

= −∑       (7) 

Step 5: Sample  new offspring individuals from the model built in Step 4. 
Repair individuals if required.  

NP

Step 6: Evaluate the objective values of the offspring individuals. 
Step 7: Update population using replacement strategy. 
Remark: As for the replacement strategy, steady-state replace is used, by which 

the pool of the parents and offspring are ranked based on their objective values, and top 
individuals are selected for next generation.  

Step 8: Determine the best individual of the current new population with the best 
objective value. If the objective value is better than the objective value of bestX , then 
update bestX  and its objective value with the value and objective value of the current 
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best individual. 
Step 9: If a stopping criterion is met, then output bestX  and its objective value; 

otherwise go back to Step (3). 
As for the problems to direct chaotic orbit and to synchronize chaotic systems, 

the searching solutions are  and  
respectively. Obviously, multiple variables need to be determined if N is large. Besides, 
in Steps 1 and 5, if newly generated  or 

( (0), (1), , ( 1))Tu u u N − ( (0), (1), , ( 1))TK K K N −

u K  is exceeded its bound (i.e. μ±  or κ± ), 
it will be set as its nearest bound value based on the repairing strategy.  

 
3.2. EDAMA 

Starting from an initial state, simulated annealing (SA) randomly generates a 
new state in the neighborhood of the original one, which causes a change of  in the 
objective function value. For minimization problems, the new state is accepted with 
probability , where  is a control parameter. SA provides a 
mechanism to probabilistically escape from local optima and the search process can be 
controlled by the cooling schedule [12].  

EΔ

min{1,exp( / )}E T−Δ T

In EDAMA, SA-based local search is inserted after Step 7 in EDA to enrich the 
local searching behaviors and to avoid premature convergence. Based on its 
performances, each solution is assigned a probability to be selected by the rank-based 
fitness assignment technique [10]. Then, the roulette wheel mechanism [10] is used to 
decide which solutions will be selected. Subsequently, the selected solutions will 
perform the SA-based local search with a predefined probability . Due to the 
mechanism of roulette wheel rule, good solution will gain more chance for exploitation. 
Besides, it is easy to control such an exploitation process by adjusting the value of . 
Moreover, for the parameter settings of SA, proper initial temperature should be high 
enough so that all states of the system have an equal probability of being visited and at 
the same time it should not be rather high so that a lot of unnecessary searches in high 
temperature will be avoided. In EDAMA, an initial temperature is set as 

, where   and  denote the worst and best objective values in 
the initial population, respectively;  denotes the acceptance probability of the worst 
solution compared with the best one. Exponential cooling schedule, 

lsp

lsp

( )0 / lnw bt c c= − − rp wc bc

rp

1k kt tλ −= , 0 1λ< < , 
is applied, which is believed to be an excellent cooling recipe, since it provides a rather 
good compromise between a computationally fast schedule and the ability to reach 
low-energy state.  
 

4. SIMULATION 
 

4.1. Simulation on directing chaotic orbits 
As a typical discrete chaotic system, Hénon Map is described as follows. 

2
1 1 2

2 1

( 1) ( ) ( ) 1
( 1) ( )

x k px k x k
x k qx k

⎧ + = − + +⎪
⎨

+ =⎪⎩
       (8) 

where =1.4, and =0.3. p q

Consider (P1) first, the target  is set to be a fixed point (0.63135, 0.18941) T . tx
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Let = (0, 0) T , and  is only added to 0x ( )u k 1x  with the bound μ =0.01. To test the 
performance of EDAMA, EDAMA is compared with standard EDA and SA. In 
EDAMA, the population size is 100, the maximum generation is 200, , 

, and cooling rate 
0.1lsp =

0.05rp = 0.9λ = . In EDA, the population size is 100, and the 
maximum generation is 200. In SA, 0.05rp = , 0.9λ = , the step of Metropolis sampling 
process under each temperature is set to 1000, and the maximum generation is set to 20. 
Under different values of , Table 1 lists the mean objective value and the best 
objective value of 100 independent runs for each of the above three algorithms. From 
Table 1, it can be seen that EDAMA is superior to EDA and SA in term of searching 
quality and derivation of the results. It could be concluded that EDAMA is more 
effective and more robust on initial conditions.  

N

 
Table 1 Statistics performance of EDAMA, EDA and SA under different  N

N EDAMA EDA SA
N=6 Mean 0.01913 0.09784 0.03922

 Best 0 0.09405 0
 Standard Deviation 0.04033 0.0028 0.0537

N=7 Mean 0.00281 0.02091 0.00585
 Best 0 0.01385 0
 Standard Deviation 0.00593 0.00766 0.008

N=8 Mean 0.00082 0.02838 0.00066
 Best 0 0.00124 0
 Standard Deviation 0.00173 0.03057 0.00091

N=9 Mean 0.00007 0.05913 0.00002
 Best 0 0.00078 0
 Standard Deviation 0.00015 0.05706 0.00002

N=10 Mean 0 0.06831 0.00005
 Best 0 0.00138 0
 Standard Deviation 0 0.03425 0.00006

 
4.2. Simulation on synchronization of chaotic systems 

Next, we consider chaos synchronization problem based on EDAMA. The driven 
system is Eq. (8) with = (0.2, 0.3) , and the response system is as follows. (0)x T

2
1 1 2 1

2 1

( 1) ( ) 1 ( ) ( ( ) ( )
( 1) ( )

y k py k y K k y k x k
y k qy k

⎧ + = − + + + ⋅ −⎪
⎨

+ =⎪⎩
1 )      (10) 

where = (0.8, 0.5) T . (0)y
Chaos synchronization can be formulated as (P2). We set ,  and 5N = 1κ =

0.03δ = . One of the typical results is showed in Fig. 1. Fig.1 (a) is the error of the first 
component between two systems by dealing with (P2) online; (b) is the corresponding 
value of K ; (c) illustrates the bias of 1 1x y−  without dealing with (P2) online. It can be 
seen from Fig. 1 (a) that the response system synchronizes the driven system very well, 
but without dealing with (P2) online the two systems get apart from each other only 
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after a few steps as shown in Fig. 1 (c). In a word, it is concluded that EDAMA can 
effectively and efficiently solve the problem synchronizing chaotic dynamical systems. 
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To our knowledge, this is the first 
report of hybridizing estimation of 
distribution algorithm and simulated 
annealing for chaos control and chaos 
synchronization. The proposed approach 
not only performs exploration by using 
the population-based evolutionary 
searching ability of EDA, but also 
performs exploitation by using the 
SA-based local searching behavior. 
Simulation results based on Hénon Map 
demonstrated the effectiveness and 
efficiency of EDAMA. Fig.1 Chaos synchronization 

 
5. CONCLUSION 
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