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Abstract- The variational iteration method is employed to solve conservative oscillator 
containing complicated nonlinearities. In order to expand the nonlinear terms into 
truncated Fourier series, an approach of undetermined coefficient is proposed. 
Numerical examples shows the feasibility and efficiency of the variational iteration 
method as well as the presented technique for Fourier series expansion. 
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1. INTRODUCTION 
 

Recent years have witnessed the wide applications of the variational iteration 
method (VIM), initiated by He [1-3], in various nonlinear problems [4-9]. In this paper, 
we restrict our attention to the VIM for solving nonlinear oscillating equations with very 
complicated nonlinearities. Since the early stage of its development, the VIM has been 
extensively employed to address nonlinear oscillators, e.g., conservative oscillators such 
as vibrations of the eardrum [3], the Duffing equation [3, 11], the ball-bearing oscillator 
[6-7], the mathematic pendulum [3, 6-7,10], nonlinear oscillators with discontinuities 
[12] and that with fractal force [13], and so on. 

Since the VIM is usually implemented in the frequency domain, for nonlinear 
oscillators with complicated functions, a big obstacle will be confronted when 
expanding the nonlinearities into truncated Fourier series. To this end, an undetermined 
coefficient method is proposed to tackle this difficulty. With the help of this method, the 
VIM solutions are obtained to very high accuracy. 
 

2. VARIATIONAL ITERATION METHOD 
 

Consider a nonlinear conservative oscillator described as 
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where the superscript denotes the differentiation with respect to time , t A  is a given 
constant, and  is a complex function. Equation (1) can be rewritten as )(xf
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where ω  is the priori unknown frequency of the periodic solution  being sought. )(tx
Using He’s variational iteration method, an iteration scheme is usually given as 
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subject to the initial conditions as 

  Axn =)0( , , (4) 0)0(' =nx

where the superscript denotes the differentiation with respect to τ . Assume that the 
input of starting function has the form 

  ττ cos)(0 Ax = . (5) 

The nth-order VIM approximations for ω  is determined by eliminating the secular 
term, i.e., solving the equation 
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3. FOURIER SERIES EXPANSION OF f(xn) 

 
The major difficulty in obtaining Eq. (6) is expanding the nonlinear terms into 

Fourier series. For example, a nonlinear function such that )(1/1 2 τx−  has to be 

transformed into truncated Fourier series of τ , in which x is truncated Fourier series 
containing N harmonics. In most literature, the harmonic balance equation can be easily 
obtained because the considered nonlinearities are described as integral power functions. 
An omnipotence yet inefficient method of obtaining the Fourier coefficients is 

integrating the product of )(1/1 2 τx−  and each harmonic in ]2 ,0[ πτ ∈ . However, it 

is tough even impossible to use this technique in our study.  

Take a functional ))(()( ττ xhf =  of τ  to illustrate a new method of 

undetermined coefficients for Fourier series expansion. Note that )(τx  is a truncated 

Fourier series, hence )(τf  has a period as π2=T . In the cyclic method [14], first a 

set of points on the periodic orbit at M uniformly distributed time levels such that 

},,2,1  ,/)1(2{ MnMntn =−= π  is selected. At the chosen time points, )(τf  can be 

discretized as 
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Here  is a constant vector. Assume f )(τf  has a truncated Fourier series as 
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where  and  are priori unknowns. According to Eqs. (7) and (8), at the uniformly 
selected points 

kc ks
},,2,1  ,/)1(2{ MnMnn =−= πτ , one has 
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Let , one can deduce a linear equation T
110 },,,,,{ NN scscc=q

  fHq =  (10) 

where  is a matrix of dimension M×(2N+1) with the row vectors as H

 [ ]  sincossincos1  nnnnn NN ττττ=H , Mn ,,2,1= . (11) 

In order to determine q, theoretically there must be 12 +N  chosen time points, i.e., 
M=2N+1. However, choosing only 2N+1 points is not enough for ensuring high 
accuracy of q. If more than 2N+1 points are adopted, i.e., when M>2N+1, Eq. (10) 
becomes over-determined. The least squares method is employed to obtain q of the 
over-determined equations. 
 

4. NUMERICAL EXAMPLES 
 
Consider the following oscillating equation [15] 
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Figure 1 shows a phase plane of Eq. (12) with A=10. The solution provided by the VIM 
is in excellent agreement with the numerical result. The frequency attained by the VIM 
versus A is plotted in Fig. 2. For any given value of A, it holds that AxA ≤≤− . Since 

21 x+  approaches 1 when 1<<A , Eq. (12) becomes a harmonic oscillator. 

Therefore, the angular frequency converges 1 as A  approaches 0, as shown in Fig. 2.  
The second example corresponds to the following equation 
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where σ  is a positive constant. Equation (13) describes a discontinuous nonlinear 
oscillator. The phase planes for different values of σ are plotted in Fig. 3. When 
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1.0=σ , the phase plane is almost the same as a cycle with the diameter as 1. That is 
because when 1<<σ , Eq. (13) can be approximately considered as a harmonic 
oscillator. As σ  increases, the velocity increases and the phase plane become 
complicated. Even though, the VIM is capable of tracking the complex responses. Also, 
one can see from Fig. 4 the angular frequency decreases as A increasing, while it 
increases as σ  increasing, respectively. 
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Fig. 1  Phase plane of Eq. (12) with A=10, where solid line denotes numerical solution 
and heavy dots the 10th-order VIM approximation with N=10 
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Fig. 2  Angular frequency of Eq. (12) versus A, where solid line denotes numerical 
solution and heavy dots the 10th-order VIM approximation with N=10 
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Fig. 3  Phase planes for Eq. (13) with A=1, where the heavy dots denote the 30th-order 
VIM approximation with , the dot line for 30=N 1.0=σ , the dashed line for 1=σ  
and the solid line for 10=σ . 

In the last example, we consider 
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The nonlinear restoring force 21/)sgn()( xxxf +=  versus displacement x is shown 
in Fig. 5. This nonlinear function is discontinuous and is complicated than bilinear term 
of Eq. (13). The phase plane and response-frequency curve also show good excellent 
agreement of the VIM results and the numerical ones. The phase plane even contains 
discontinuous points, i.e., the points when the velocity takes extreme values. 
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Fig. 4  Angular frequency of Eq. (13) versus A and σ , respectively, where solid line 
denotes numerical solutionS and heavy dots the 30th-order VIM approximation, N=30 
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Fig. 5  The nonlinear term in Eq. (14) versus x 

 
5. CONCLUSIONS 

 
We have employed the VIM to solve autonomous oscillators with complex 

nonlinearities. An approach is also proposed, based on the cyclic method, to expand the 
nonlinear terms into time Fourier series. This approach makes it easy to implement the 
VIM to seek high order iteration approximations. Three numerical examples are 
presented to validate the proposed approaches. The solutions attained by the VIM, 
together with the presented approach of Fourier series expansion, are in excellent 
agreement with the numerical results. Basically, the approximations can be obtained to 
any desired accuracy without any additional difficulty. 
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Fig. 6  Phase plane for Eq. (14) with A=10, where the heavy dots denote the 30th-order 
VIM approximation with N=50 and the solid line for the numerical solution 
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Fig. 7  Angular frequency of Eq. (14) versus A, where solid line denote numerical 
solution and heavy dots the 30th-order VIM approximation with N=50. 
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