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Abstract- Since the classical iterative methods for solving nonlinear ill-posed problems 
are locally convergent, this paper constructs a robust and widely convergent method for 
identifying parameter based on homotopy algorithm, and investigates this method’s 
convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic 
type equation to testify that the homotopy regularization can identify the parameter 
effectively. 
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1. INTRODUCTION 
 
 In general, the nonlinear inverse problems for parameter identification of 

are formulated as ( )q x
( ) 0F q =                                             (1) 

where  is a nonlinear Fréchet differential operator, and( ) :F Q X⋅ ⊂ → Y X , are 
Banach spaces. We may as well assume q

Y
∗  is one of the solutions of Eq. (1). Generally 

speaking, parameter identification aims to reconstruct the unknown function. The 
coefficients, the right side of the differential equations, etc, can be the parameters which 
will be inverted. Hence, the parameter identification is a very interesting inverse 
problem, whether in theory or in practice. In 2002, Dennis W.Brewer and Robert 
K.Powers investigated the identification of parameters in a Volterra integro-differential 
system with a weakly singular kernel [3]. In 2006, S.Kim and K.L.Kreider studied the 
parameter identification in nonlinear elastic and viscoelastic plates by solving material 
properties of the plate [15]. Since the identification of parameter belongs to the scope of 
the inverse problems, and inverse problems are usually ill-posed in Hadamard's sense, 
we need to seek some effective regularization methods to solve these problems. 
Tikhonov regularization [6,1,7] and iterative methods [9,10,12] are very useful 
regularization techniques for solving nonlinear ill-posed problems. For example, 
iteratively regularized Gauss-Newton method [2]: 

1
1 0[ '( ) '( ) ] [ '( ) ( ) ( )]k k k k k k k k kq q F q F q I F q F q q qα α∗ − ∗

+ = − + + −                          

Levenberg-Marquadt method [11] 
1

1 [ '( ) '( ) ] '( ) ( )k k k k k kq q F q F q I F q F qα∗ − ∗
+ = − + k  
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and iterative multilevel algorithm [13] are attractive methods for solving nonlinear ill-
posed problems for their straightforward implementation. Here the mark ∗  denotes the 
adjoint of the operator. These iterative methods all have good convergent properties. 
However, these methods have limitation. They are locally convergent, that is to say, the 
convergence depends highly on good initial estimates. Therefore, it is necessary to look 
for other better methods.  
           It is well known that homotopy method is an important tool in nonlinear 
problems, which has widely convergent property. Therefore, this paper introduces 
Newton homotopy method, and constructs a new and widely convergent method for 
solving nonlinear ill-posed problem (1). Then Lyapunov theory is introduced to prove 
the stability of the dynamical system method. The reason that we choose the dynamical 
system methods is that the dynamical system methods obtain the convergence theorem 
under less restrictive conditions on the equation than the theorems known for the 
corresponding discrete methods (or so-called iterative methods). Numerical 
performance listed in the 4th section shows the method’s effectiveness. 

 
2. HOMOTOPY THEORY AND DYNAMICAL SYSTEM METHOD 

  
 Firstly, we briefly introduce the homotopy theory for solving nonlinear operator 
equations (1). The concept of homotopy was first formulated by Poincaré around 1900. 
More details can refer to Watson [8]. 
            In short, Homotopy is a continuous transformation from one function to another. 
A homotopy function ( , )H q λ   between these two functions  and  from a space F G X  
to a space Y  is a continuous map  

: [0,1]H X Y×  
which is constructed by adding a scalar homotopy parameter [0,1]λ ∈  and a simple 
function  to the existing function , such that ( )G q ( )F q

( ,0) ( ), ( ,1) ( )H q G q H q F q=       =  

The premise is that the solution of ( ) 0G q =  has been known. For example, we 
may choose an initial parameter  arbitrarily, and take0 ( )q x 0( ) ( ) ( )G q F q F q= − . Hence, 

 is a solution of . Then a Newton homotopy can be constructed as follows: 0q ( ) 0G q =

0( ) (1 ) ( ) 0, 0 1F q F qλ λ− − =     ≤ ≤                                                      (2) 

We wish that there exists a curve ( )q q λ= , [0,1]λ ∈ , which satisfies the following 
homotopy equation 

( , ) 0H q λ =  

We proceed from  along this curve0(0)q = q ( )q q λ= , and then obtain a 

solution , which is a solution of Eq. (1). We apply a transformation (1)q ∗= q aq e λλ −= −  
(  is a constant) to map 0a > [0,1]λ ∈  to [0, )λ ∈ ∞ . For convenience, we still use λ  in 
the subsequent sections, but [0, )λ ∈ ∞ . We rewrite Eq. (2) as  

0( ) ( ) 0, [0, )aF q e F qλ λ−− =     ∈ ∞                                         (3) 
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Differentiating each side of Eq. (3) with respect to λ , we have 

     0'( ) ( ) ( )aF q q ae F qλλ −= −                                             (4) 

In order to avoid the ill-posed inversion of Fréchet differential operator, one regularizes 
this problem and obtains the following parameter differential regularization: 

1
0

0

( ) [ '( ) '( ) ( ) ] '( ) ( ),
(0) , [0, )

aq ae F q F q I F q F q
q q

λλ α λ
λ

− ∗ − ∗= − +
=        ∈ ∞

                      (5) 

 
3. LYAPUNOV THEORY AND CONVERGENCE THEOREM 

 
In this section, we firstly introduce Lyapunov stability theory for abstract 

nonlinear dynamical system in Banach spaces, and use this stability theory to prove the 
parameter differential regularization to be convergent. 
          Let X  be an infinite dimensional Banach space and Q  be an open or closed 

subset containing 0. For a map Φ  fromQ R , we consider a general dynamical 
system  

X+× →

0

( ) ( ( ), ), [0, )
(0)

e e
e e

λ λ λ λ= Φ     ∈ ∞
=

                                                  (6) 

Definition 3.4[5] Let { }0 D Q X= ⊂ ⊂ be a subset and V be a function 

.  :V Q R R+ +× → ( ( ), )V e λ λ  is called positive definite on \Q D R+× ,  if  
(1)  ( ( ), ) : ( ( ), ) 0,e D R V eλ λ λ λ+∀ ∈ × =

>(2)  ( ( ), ) \ : ( ( ), ) 0.e Q D R V eλ λ λ λ+∀ ∈ ×
The next theorem states the sufficient condition of asymptotical stability of (5). 
Theorem 3.5 [4] Consider equation (6) with ( ,0) 0λΦ = , ( )e Q X⊂ 0, λλ ∈ λ≥ . If a 
function ( , ( ))V eλ λ  can be found, defined in a neighborhood of ( ) 0e λ = , which for 

0λ λ≥  is positive definite in this neighborhood with negative definite orbital derivative, 
the solution of ( ) 0e λ =  is asymptotically stable. 
Theorem 3.6 Assume  is locally unique. Let Eq. (5) holds. Moreover, we assume 
that  

q∗

0'( ) 1, ( )F q L q B qρ≤ <     ∈  

and ( ) 0α λ >  is continuously differentiable, monotonically decreases as λ → ∞ , 

2[0, )

(0) | ( ) |: max
( )

Cα λ

α α λ
α λ∈ ∞

=                                            (7) 

( ) 2a Cαα λ ≥ +                                                    (8) 
Here  is the constant in Eq. (3). Then, the parameter estimator a ( )q λ  defined according 
to Eq. (5) satisfies  as( )q qλ ∗→ λ → ∞ . 
Proof.   Because of ( ) ( )e qλ λ q∗= −  and Eq. (5), we investigate the following 
dynamical system 
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                        (9) 
1

0( ) [ '( ) '( ) ( ) ] '( ) ( )

(0) (0)

ae ae F q F q I F q F

e q q

λλ α λ− ∗ − ∗

∗

= − +

= −

q

Now we take Lyapunov function as  
( ( ), ) : ( ) ( ), ( )V e e eλ λ α λ λ λ= < >  

Because of ( ) 0α λ > , it is easy to see that ( , ( ))V eλ λ  is positive define in . Next, \{0}Q
( ( ), ) 0V e λ λ =  when ( ) 0e λ = . Furthermore, 

2 1
0

:

( ) ( ), ( ) 2 ( ) ( ), ( )

( ) ( ) 2 ( ) [ '( ) '( ) ( ) ] '( ) ( ), ( )a

dV V
d

e e e e

e ae F q F q I F q F q e

λ

λ

λ
α λ λ λ α λ λ λ

α λ λ α λ α λ λ− ∗ − ∗

=

      = < > + < >

      = − − < + >

(10) 

In the following, we mainly focus on the second item of Eq. (10). 
             Since 0'( ) 1, ( ),F q L q B qρ≤ <     ∈  and ( )α λ  is positive and monotonically 
decreases,  

1
0 0

0 0

0
0

0

0

0

( ) ( ) [ '( ( )) '( ( )) ( ) ] '( ( )) ( )

( )
( )

( )
( )

( )
(1 )

( )

a

a

a

a

q q q d a e F q F q I F q F q d

eaL F q d

aL F q
e d

L F q
e

λ λ
τ

λ τ

λ
τ

λ

λ τ τ τ τ α τ τ τ

τ
α τ

τ
α λ

α λ

− ∗ − ∗

−

−

−

− = = − +

                 ≤

                 ≤

                 = −

∫ ∫

∫

∫
 (11) 

Since  
0 0 0 0( ) ( ) ( ) [ ( ) ( ) ]F q F q F q L q q L q q q qλ λ∗ ∗ ∗= − ≤ − ≤ − + −       (12) 

we get 
2 2

0 0( ) (1 ) ( ) (1 ) ( )
( ) ( )

a aL Lq q e q q e eλ λλ λ λ
α λ α λ

− −− ≤ − − + −  

Therefore,  
2

0 2

(1 )( ) ( )
( ) (1 )

a

a

L eq q e
L e

λ

λλ λ
α λ

−

−

−
− ≤

− −
                                  (13) 

From Eq. (12) and Eq. (13), we can get 
1

0

0

22
2

2 ( ) [ '( ( )) '( ( )) ( ) ] '( ( )) ( ), ( )

2 ( ) ( ) ( )
( )

( )2 ( )
( ) (1 )

a

a

a
a

a e F q F q I F q F q e
La e F q e

ae L e
L e

λ

λ

λ
λ

α λ λ λ α λ λ

α λ λ
α λ

α λ λ
α λ

− ∗ − ∗

−

−
−

   − < + >

≤

≤
− −

λ

     (14) 
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Hence 
2

2 2
2

2
2

2

2 ( )( ) ( ) ( ) ( )
( ) (1 )

2 ( )[ ( ) ] ( )
( ) (1 )

a

a

a

a

ae LV e
L e

ae L e
L e

λ

λ

λ

λ

α λ eλ α λ λ λ
α λ

α λα λ λ
α λ

−

−

−

−

≤ − ⋅ +
− −

         = − −
− −

 

From Eq. (7) and Eq. (8), . ( ) 0V λ <
             Up to now, all of the conditions of Theorem 3.5 are satisfied. Hence ( )q λ  
converges to  asymptotically asq∗ λ → ∞ . The proof is completed. 
 

 4. NUMERICAL PERFORMANCE 
 

   In this section one numerical example for the solution of the parameter 
estimation problem, to estimate the parameter q  in  

0 1

( ) ,
(0) , (1)

t tqu f
u g u g
− =

=    =
                                            (15) 

from measurements of the  in[0 , is presented. This parameter estimation problem 
can be formulated in terms of a nonlinear operator equation 

u ,1]

0( )F q u=  
where  is the operator which maps the conductivity q  onto its indirect 
measurement . In [6] it was proven that this operator is Fréchet-
differentiable with a Lipschitz-continuous derivative. Moreover, we can prove that F  
satisfies (6). Thus the general results of Section 3 are applicable.   

F
0 2 (0,1)u L∈

Implementation of the homotopy regularization requires the calculation 
of , which is carried out with a finite-element scheme with ansatz for u  of linear 
splines. Using one step Euler, the homotopy regularization is discretized as 

( )F q

1
1 0[ '( ) '( ) ] '( ) ( )ak

k k k k k kq q ae F q F q I F q F qα− ∗ − ∗
+ = − +                    (16) 

It is assumed that the parameter to be estimated is 11 sin(2
2

q )tπ∗ = + . We use an initial 

estimate . The exact data  is assumed to be 
 and the right-hand side 

2 2
0 (1 ) (0.25 )(0.75 )q q t t t tμ∗= + − − − 0u

(1 ) 1te e t+ − − f  of the differential equation (15) is given by 
( cos(2 )) ( 1) cos(2 )te q t e tπ π π∗− + + − π . 

               3% noise is added to the homotopy regularization and Landweber iteration, 
simultaneously. We compare these methods, and get the numerical results listed in 
Table 1 by using the PC-MATLAB. 
 

Table 1 The Result of Homotopy and Landweber Iteration with Noise 
 μ  δ  Error  q qδ∗ − Relative error q q qδ∗ ∗−  

Landweber 10 3% 11.2803 3.2229 
Homotopy 10 3% 0.0614 0.0176 
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5. CONCLUDING REMARKS 
 

This paper took advantage of the properties of Newton homotopy, and posed 
robust dynamical system method for identifying parameter. The numerical example 
proves this method to be effective. 
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