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Abstract- The inverse problem of estimation of the electrical conductivity in the 
Maxwell’s equation is considered, which is reformulated as a nonlinear equation. The 
Generalized Cross Validation is used to estimate the global regularization parameter and 
the damped Gauss-Newton is applied to impose local regularization. The damped 
Gauss-Newton method requires no calculation of the Hessian matrix which is expensive 
for traditional Newton method. GCV method decreases the computational expense and 
overcomes the influence of nonlinearity and ill-posedness. The results of numerical 
simulation testify that this method is efficient.  
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1. INTRODUCTION 
 
 In this paper, we consider the estimation of the electrical conductivity in 
Maxwell’s equations. This problem can be reformulated as a nonlinear equation, which 
is ill-posed. Our work is devoted to a new numerical method for the inverse problem. 
There are two main computational difficulties in the solution of the inverse problem. 
Firstly, the regularization parameter is unknown, and secondly, a nonlinear functional 
has to be minimized. These impose special difficulties if the problem is large. 
           There have been many new methods applied to this domain [1,2]. The first 
pioneering solution of the fully 3-D Maxwell’s equation inverse problem was presented 
by Eaton[3] more than 15 years ago. Yet in spite of this, until recently, the trial-and-
error forward modeling was almost the only available tool to interpret the fully 3-D EM 
dataset. Today the situation has slightly been improved, and the methods of 
unconstrained nonlinear optimization [4] are gaining popularity to address the problem. 
In spite of these successes and the relatively high level of modern computing 
possibilities, the proper numerical solution of the 3-D inverse problem still remains a 
very difficult and computationally intense task for the following reasons. (1)It requires a 
fast, accurate and reliable forward 3-D problem solution. Approximate forward 
solutions [5,6,7,8,9] may deliver a rapid solution of the inverse problem (especially, for 
models with low conductivity contrasts), but the general reliability and accuracy of this 
solution are still open to question.(2)The problem is ill-posed in nature with nonlinear 
and extremely sensitive solutions. This means that due to the fact that data are limited 
and contaminated by noise there are many models that can equally fit the data within a 
given tolerance threshold. (3) We need to solve a new nonlinear problem for every new 
regularization parameter and therefore the algorithm is computationally expensive. The 
algorithm is substantially cheaper if we estimate β to be close to the optimal *β . 
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Therefore, the shortages of the above mentioned motive us to design a highly efficient, 
numerically stable and globally convergent algorithm. 

        As mentioned above, the goal of this paper is to apply the damped Gauss-
Newton method coupled with GCV (Generalized Cross-Validation) method to choose 
an adaptive regularization parameter. The paper is built as follows. We start with a 
review of the damped Gauss–Newton method as applied to a minimization problem 
with a constant regularization parameter. We then present the major ideas of our 
algorithm. Our algorithm uses the Generalized Cross Validation and we review it in 
section 3. Section 4 gives an example of inverting inductivity from Maxwell’s equations. 
 

2. DAMPED GAUSS-NEWTON METHOD 
 

 In this section we present damped Gauss-Newton method. Our forward problem 
time-dependent Maxwell equations can be written as  
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over a domain ,where  and  are the electric and magnetic fields, [0, ]TΩ× E H σ  is the 
conductivity,  ε  is the permittivity,  μ  is the permeability and  is a source. The 
equations are given with boundary and initial conditions: 
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By [10], we know an inverse electromagnetic problem can be formulated as the 
following nonlinear operator equation: 

( )F d δσ = ,                                                            (4)  
where is a nonlinear operator, dF δ is the observed data. The goal of this paper is to 
reconstruct the inductivity from the observed data with noise. The optimal distribution 
of conductivity minimized the functional  

( ) ( ) 22

refF d Wδφ σ β σ σ= − + − ,                                            (5) 

where ⋅  denotes 2-norm,  W is positive weight function, refσ is reference model, β  is 
regularization parameter. If β  is fixed, we must solve the unconstrained optimization 
problem (5). This leads to the Euler-Lagrange system 

( ) ( ) ( ) ( )( 0TT
refg W W J F d δ )φ σ β σ σ σ σ

σ
∂

= = − + −
∂

=                       (6) 

( )g σ is the gradient of (5), ( )J σ is sensitive matrix 

( ) FJ σ
σ
∂

=
∂

.                                                          (7) 

In order to avoid the difficulty of calculating Hessian matrix, which is second derivative 
of , we linearize the operator  F F
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( ) ( ) ( ) ( ),F F J Rσ δσ σ σ δσ σ δσ+ = + +                                 (8) 

where ( ) ( )2,R σ δσ ο δσ= . From (6) and (8), we can obtain Gauss-Newton equation  

( ) ( ) ( ) ( )( ) 0TT
refW W J F J d δβ σ δσ σ σ σ σ δσ+ − + + − =                    (9) 

The minimization problem is solved by the iterative format as follows, at the kth step 
( ) ( )( ) ( ) ( )( ) ( )T TT T

k k k k k rJ J W W J d F W Wδσ σ β δσ σ σ β σ σ+ = − − − ef     (10) 

Denoted 1k kσ σ δσ+ = + , (10) can be written as  

( ) ( )( ) ( ) ( ) ( )( )1
T TT T

k k k k k k kJ J W W J d F J W Wδ
refσ σ β σ σ σ σ σ β σ++ = − + −     (11) 

The iterative solution at kth step is the minimum norm solution of Tikhonov functional 

( ) ( )( ) ( ) 22

1k k k k k refF J d Wδφ σ σ σ σ β σ σ+= + − − + −1+ .               (12) 

If the initial value is close to true inductivity, the algorithm is fast convergent. If the 
initial value is undesirable, the search step must become bigger. Consequently, 
the ( ),R σ δσ what we removed in the linear process became larger, this will affect 
accuracy. In order to keep the Gauss-Newton iteration in the descent direction and the 
iterative step is small enough, we adopt armijo method to amend the iterative step. If the 
iterative direction is no longer descent, we amend the step δσ  to ωδσ , where 
0.1 0.5ω< < . As discussed above, with small enough step, the nonlinear functional is 
always in the descent direction 

( ) ( )1, k , kφ β σ φ β σ+ <                                                (13) 
What we discussed above is in the case of regularization fixed. Next we introduce how 
to adaptively select regularization parameter, stopping criteria for iteration and general 
sketch of algorithm. 
 

3. GCV FUNCTION AND INVERSION ALGORITHM 
 
 Generalized Cross Validation (GCV) method is a deformation of Unbiased 
Predictive Risk Estimator (UPRE) method [11]. Even if we don’t know the variance of 
noise, this method can give the adaptive regularization parameter and distinguish the 
noise and nonlinearity. We denote 1k ref (σ σ σ+ )k rr r J efσ σ= − ( )kJ J, σ= , − ,=

( ) 2 2J r Wφ σ β= − + σ  .                                            (14) 

And let ( ) ( )r Jβ σ β= , ( )σ β  is the solution of (number), the GCV function  

( ) ( )
( )( )2GCV

trace

r r

I C

β
β

β

−
=

−
                                         (15) 

whereC J , ( ) ( ) T1T TJ J W W Jβ β
−

= + I is unit matrix. With regularization parameter β  

which minimizes the GCV function, we denote the regularization parameter kβ of the 
kth iteration. Next we introduce some necessary condition and stopping criteria of 
damped Gauss-Newton method with adaptive regularization parameter. If we got kβ and 



 
 

L. Ding, B. Han and J. Liu  
 

787

kσ at the kth iteration, we can obtain 1kσ + by(number). In the case of β fixed, 

( ) (1, k ), kφ β σ φ β σ+ <  at every iterative step. But with the parameter changing, we 
demand  

( ) ( )1 1 1,k k k k,φ β σ φ β σ+ + +< ,                                        (16) 
namely  

( ) ( ) ( ) ( )2 22 2

1 1 1 1k k k ref k k k refF d W F d Wδ δσ β σ σ σ β σ σ+ + + +− + − < − + −   (17) 

We select  

( )
1

1max ,
k k

k k

σ σ
δ

σ σ
+

+

−
<                                               (18) 

as stopping criteria. 
The damped Gauss-Newton algorithm on basis of GCV function: 
Select initial value 0σ  and reference model refσ , as 1, 2k =  

i) Calculate ( kJ )σ and ( )kr σ . 
ii) Calculate 1kσ + by (11) and evaluate kβ by GCV function. 
iii) Use the regularization parameter to calculate 1k kδσ σ σ+= − , , ( )1 1,k kmφ β + +

( )1,k kmφ β + . 

iv) If , let m( ) ( )1 1 1, ,k k k km mφ β φ β+ + +≤ 1k km +=  and go to i). 

v) If , let ( ) ( )1 1 1, ,k k k km mφ β φ β+ + +> 1k km m mωδ+ +  and go to iii). =

vi) If stopping criteria  ( )
1

1max ,
k k

k k

m m
m m

δ+

+

−
<  is satisfied, stop iteration. 

 
4. NUMERICAL SINMULATIONS 

 
In this section, we compare the efficiency of traditional damped Gauss-Newton 

method and GCV method which is based on the damped Gauss-Newton method in two 
experiments.The physical domain isΩ . For simplicity the inverse problem is considered 
on a uniform, grid. The source function is34 35 16× × ( ) (2

0sint )f t t e tα ω−= , where 

0

3
ωα = , 0 02 fω π= ,  is the centre frequency. 0 100MHzf =

 
4.1. Experiment 1 
 
               In this section we suppose there is a cavity in the homogeneous background, 
where permittivity , permeability1256.64 10 F/mε −= × 0μ = . The relative conductivity 
of cavity and background are -3.2775 and -5.2983 respectively. Both methods select the 
same relative initial value 1.5σ = − . The inversion took approximately 20 minutes by 
GCV method against to 30 minutes by traditional damped Gauss-Newton method run 
on a 3.0 Ghz Pentium Dual-Core with 2Gb of RAM. The relative error 
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/inv true trueσ σ σ− of a and b in Fig.1 is 35.76%, a and c is 36.75%, where invσ is 
iterative solution, trueσ is the true model. 
 

 
 

Fig.1 a)True model; b)Results of damped Gauss-Newton method; c)Results of GCV 
method; d)Cross-section of a at x=0; e) Cross-section of b at x=0; f) Cross-section of c 
at x=0 
 
4.2. Experiment 2 
 

This model has two cavities in the homogeneous background, the relative 
conductivity of cavity and background are -3.2775 and -5.2983 respectively, other 
parameters are same as the experiment 1. The observed data were generated using the 
forward modeling algorithm (Finite Difference in Time Domain), these data were 
corrupted with 5% uniformly distributed random noise. The relative error of a and b in 
Fig.2 is 157.76%, a and c is 45.75%. 
 

 
 

Fig.2 a)True model; b)Results of damped Gauss-Newton method; c)Results of GCV 
method; d)Cross-section of a at Z=8; e) Cross-section of b at Z=8; f) Cross-section of c 
at Z=8 
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5. CONCLUDING REMARKS 
  
 This paper has addressed the GCV method for solving inverse Maxwell’s 
equations. GCV method coupled with traditional damped Gauss-Newton methods have 
been used in the experiments. Results show that this new method is more available than 
damped Gauss-Newton method. It is a widely and fast convergent method even if the 
initial guess value is far away from the true coefficient. 
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