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Abstract- The construction of conserved vectors using Noether’s and partial Noether’s

theorems are carried out for high order PDEs with mixed derivatives. The resul-

tant conserved flows display some interesting ‘divergence properties’ owing to the

existence of the mixed derivatives. These are spelled out for various equations from

mathematical physics.
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1. INTRODUCTION

When considering the construction of conservation laws via Noether’s theorem

using a Lagrangian or a ‘partial Lagrangian’, an interesting situation arises when the

equations under investigation are such that the highest derivative term is mixed; the

mixed derivative term is the one that involves differentiation by more than one of the

independent variables. When substituting the conserved flow back into the diver-

gence relationship, a number of ‘extra’ terms (on which the Euler operator vanishes)

arise. Thus, we have essentially ‘trivial’ conserved quantities that need to be fed

back into the conserved vectors that are computed initially via Noether’s theorem

- these are necessary terms that may guarantee the notion of ‘association’ between

conserved flows and symmetries (see [6, 1, 2]) - otherwise, the total divergence of

the computed conserved flows are the equations modulo the trivial part. A vari-

ety of high order equations are studied. For example, we consider the fourth-order

Shallow Water Wave equations and the Camassa-Holms, Hunter-Saxton, Inviscid

Burgers and KdV family of equations. These equations have their importance in

many areas of physics, and real world applications, e.g., tsunamis which are charac-

terized with long periods and wave lengths as a result they behave as shallow-water

waves. We firstly present the notation and preliminaries that will be used.

Consider an rth-order system of partial differential equations of n independent

variables x = (x1, x2, . . . , xn) and m dependent variables u = (u1, u2, . . . , um)
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Gµ(x, u, u(1), . . . , u(r)) = O, µ = 1, . . . , m̃, (1)

where u(1), u(2), . . . , u(r) denote the collections of all first, second, . . ., rth-order par-

tial derivatives, that is, uα
i = Di(u

α), uα
ij = DjDi(u

α), . . . respectively, with the total

differentiation operator with respect to xi given by

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ . . . , i = 1, . . . , n, (2)

where the summation convention is used whenever appropriate.

A current T = (T 1, . . . , T n) is conserved if it satisfies

DiT
i = 0 (3)

along the solutions of (1).

Suppose A is the universal space of differential functions. A Lie-Bäcklund oper-

ator is given by

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+ ζαi

∂

∂uα
i

+ ζαi1i2
∂

∂uα
i1i2

+ · · · , (4)

where ξi, ηα ∈ A and the additional coefficients are

ζαi = Di(W
α) + ξjuα

ij ,

ζαi1i2 = Di1Di2(W
α) + ξjuα

ji1i2
,

...

(5)

and W α is the Lie characteristic function defined by

W α = ηα − ξjuα
j . (6)

Here, we will assume that X is a Lie point operator, i.e., ξ and η are functions of x

and u and are independent of derivatives of u.

The Euler-Lagrange equations, if they exist, associated with (1) are the system

δL/δuα = 0, α = 1, . . . ,m, where δ/δuα is the Euler-Lagrange operator given by

δ

δuα
=

∂

∂uα
+
∑
s≥1

(−1)sDi1 · · ·Dis

∂

∂uα
i1···is

, α = 1, . . . ,m. (7)

L is referred to as a Lagrangian and a Noether symmetry operator X of L arises

from a study of the invariance properties of the associated functional

L =

∫
Ω

L(x, u, u(1), . . . , u(r))dx (8)
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defined over Ω. If we include point dependent gauge terms f1, . . . , fn, the Noether

symmetries X are given by

XL+ LDiξ
i = Difi. (9)

Corresponding to each X, a conserved flow is obtained via Noether’s Theorem.

For partial Lagrangians (see [7]), L, the Noether type generators, X, are deter-

mined by

XL+ LDiξ
i = Wα δL

δuα
+Difi (10)

and the conserved vector from the expression as in Noether’s theorem (see [9]).

2. APPLICATIONS

2.1. The Shallow Water Wave Equation

The shallow water wave equation (SWW), models basic water waves that rea-

sonably approximates the behavior of real ocean waves, viz.,

uxxxt + αuxutx + βutuxx − utx − uxx = 0, (11)

where α and β are arbitrary constants. From the equation (11), we separate the

cases, (1) α ̸= β and (2) α = β.

Case (1) α ̸= β, will be referred to as shallow water wave-1 (SSW-1), and corre-

sponding to the case (2) α = β, in (11), α is replaced by β, and referred to as the

shallow water wave-2 (SSW-2), viz.,

uxxxt + βuxutx + βutuxx − utx − uxx = 0. (12)

2.1.1. Shallow Water Wave-1 (SSW-1)

Here, we use the partial Lagrangian

L =
1

2
utxuxx +

1

2
u2
x +

1

2
uxut −

1

2
βutu

2
x, (13)

for which

δL

δu
= (2β − α)utxux. (14)

Substituting into (10) and separating by monomials, we obtain two cases that

emerge, (a) α = 2β and (b) α ̸= 2β.

Subcase (a): α = 2β leads to the following generators and conserved vectors.

(i) X = ∂t, W = −ut
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The conserved flow is given by

T 1 =
1

2
u2
x +

1

2
utuxxx

and

T 2 = −utux −
1

2
u2
t + u2

tuxβ + utuxxt −
1

2
u2
xt −

1

2
uxxutt.

The divergence becomes

Dt(T
1) +Dx(T

2) = 1
2
utuxxxt − 1

2
uxxuxtt. (15)

We observe that extra terms emerge. By some adjustments, these terms can be

absorbed into the conservation law. That is,

Dt(T
1) +Dx(T

2) = 1
2
utuxxxt − 1

2
uxxuxtt,

= 1
2
Dt(utuxxx)− 1

2
Dx(uxxutt)

(16)

Taking these terms across and including them into the conserved flows, we get

Dt(T
1 − 1

2
utuxxx) +Dx(T

2 + 1
2
uxxutt) = 0 (17)

The modified conserved quantities are now labeled T̃ i, where Dt(T̃ 1) +Dx(T̃ 2) = 0,

modulo the equation. Then,

T̃ 1 = T 1 − 1
2
utuxxx,

= 1
2
u2
x

T̃ 2 = T 2 + 1
2
uxxutt,

= −utux − 1
2
u2
t + u2

tuxβ + utuxxt − 1
2
u2
xt

(18)

We have a similar situation below.

(ii) X = ∂x, W = −ux

The conserved flow is given by

T 1 = −1

2
u2
x +

1

2
u3
xβ − 1

2
u2
xx +

1

2
uxuxxx

and

T 2 = −1

2
u2
x +

1

2
utu

2
xβ + uxuxxt −

1

2
uxxuxt
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so that a redefinition leads to

T̃ 1 = T 1 − 1
2
u2
xx,

= −1
2
u2
x +

1
2
u3
xβ − 1

2
u2
xx

T̃ 2 = T 2 − 1
2
uxuxxt,

= −1
2
u2
x +

1
2
utu

2
xβ + uxuxxt

(19)

Subcase (b): α ̸= 2β. The symmetry generators and conserved vectors are

(i) X = ∂u, B1 =
1

2
u2
x(2β − α), B2 = 0, W = 1.

The conserved flow is given by

T 1 =
1

2
ux −

1

2
βu2

x −
1

2
uxxx +

1

2
u2
x(2β − α)

and

T 2 = ux +
1

2
ut − utuxβ − uxxt

for the total divergence is

Dt(T
1) +Dx(T

2) = −1
2
uxxxt (20)

From the equation (20), uxxxt has two derivative consequences,

uxxxt = Dt(uxxx),

= Dx(uxxt),
(21)

which leads to two possible forms of the same conserved quantity, viz.,

T̃ 1
1 = T 1 + 1

2
uxxx,

= 1
2
ux − 1

2
βu2

x +
1
2
u2
x(2β − α)

T̃ 2
1 = T 2,

= ux +
1
2
ut − utuxβ − uxxt

(22)

or

T̃ 1
2 = T 1,

= 1
2
ux − 1

2
βu2

x − 1
2
uxxx +

1
2
u2
x(2β − α)

T̃ 2
2 = T 2 + 1

2
uxxt,

= ux +
1
2
ut − utuxβ − 1

2
uxxt

(23)
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(ii) X = ∂x, B1 = 1
3
u3
x(2β − α), B2 = 0, W = −ux

We get

T 1 =
1

2
u2
x +

1

2
u3
xβ − 1

2
u2
xx −

1

3
u3
x(2β − α)− 1

2
uxuxxx

and

T 2 =
1

2
u2
x +

1

2
utu

2
xβ + uxuxxt −

1

2
uxxuxt, (24)

so that

T̃ 1 = T 1 + 1
2
u2
xx,

= 1
2
u2
x +

1
2
u3
xβ − 1

2
u2
xx − 1

3
u3
x(2β − α)

T̃ 2 = T 2 − 1
2
uxuxxt,

= 1
2
u2
x +

1
2
utu

2
xβ + uxuxxt

(25)

2.1.2. Shallow Water Wave-2 (SSW-2)

For equation (12), we use the partial Lagrangian

L =
1

2
utxuxx +

1

2
u2
x +

1

2
uxut −

1

2
βutu

2
x, (26)

so that

δL

δu
= βutxux. (27)

The separation of monomials after substitution in (10) gives rise to a splitting

β ̸= 0 or β = 0. If β ̸= 0, we have a trivial solution, and if β = 0, then equation

(12) changes to

uxxxt − utx − uxx = 0 (28)

and the partial Lagrangian (26) becomes a standard Lagrangian

L =
1

2
utxuxx +

1

2
u2
x +

1

2
uxut, (29)

and the conserved quantities are as follows:

(i) X = ∂t, W = −ut

The conserved quantities

T 1 =
1

2
u2
x +

1

2
utuxxx
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and

T 2 = −utux −
1

2
u2
t + utuxxt −

1

2
u2
xt −

1

2
uxxutt,

lead to a redefinition

T̃ 1 = T 1 − 1
2
utuxxx,

= 1
2
u2
x

T̃ 2 = T 2 + 1
2
uxxutt,

= −utux − 1
2
u2
t + utuxxt − 1

2
u2
xt.

(30)

(ii) X = ∂x, W = −ux

Similarly, we obtain

T 1 = −1

2
u2
x −

1

2
u2
xx +

1

2
uxuxxx

and

T 2 = −1

2
u2
x + uxuxxt −

1

2
uxxuxt

so that

T̃ 1 = T 1 − 1
2
u2
xx,

= −1
2
u2
x − 1

2
u2
xx

T̃ 2 = T 2 − 1
2
uxuxxt,

= −1
2
u2
x + uxuxxt

(31)

2.2. Camassa-Holms, Hunter-Saxton, Inviscid Burgers and KdV family

of equations

We now consider the family of equations

α(vt + 3vvx)− β(vtxx + 2vxvxx + vvxxx)− γvxxx = 0. (32)

Even though it represents a class of nonlinear evolution equations, it displays varia-

tional/Hamiltonian properties and would then be subject to, amongst other things,

Noether’s theorem [10]. This is well documented in the case of the KdV equation

[5]. Also, it displays interesting soliton or soliton like solutions. Equation (32) rep-

resents a version of the KdV equation (α = 1, β = 0), the Camassa-Holm equation

(α = 1, β = 1), the Hunter-Saxton equation (α = 0, β = 1) and the inviscid Burgers

equation ut+3uux = 0 [3, 4, 8]. We modify this equation by letting v = ux to obtain

α(utx + 3uxuxx)− β(utxxx + 2uxxuxxx + uxuxxxx)− γuxxxx = 0. (33)
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Equation (33) displays variational properties with respect to the Lagrangian

L = −α

2
(uxut + u3

x)−
β

2
(uxu

2
xx + utxuxx)−

γ

2
u2
xx. (34)

The symmetries and corresponding conserved vectors are

(i) X = ∂t, W = −ut

The conserved quantities are

T 1 = −α

2
u3
x −

β

2
uxu

2
xx −

γ

2
u2
xx −

β

2
utuxxx

and

T 2 =
α

2
u2
t +

3α

2
utu

2
x −

β

2
utu

2
xx − βututxx − βutuxuxxx

−γutuxxx +
β

2
uttuxx + βuxu

2
xx +

β

2
utxuxx + γu2

xx

The total divergence is

Dt(T
1) +Dx(T

2) = 2γuxxuxxx − γutxuxxx − γuxxutxx +
1
2
βutxuxxx + βu3

xx

+ 1
2
βuxxutxx − βutxutxx + 2βuxuxxuxxx − buxuxxutxx

− β
2
ututxxx +

β
2
uxxuttx − β

2
utxutxx − βuxutxuxxx

(35)

As before, extra terms that require further analysis emerge. By making an

adjustment to these terms, they can be absorbed into the conservation law if we

note that

Dt(T
1) +Dx(T

2) = Dx(γu
2
xx)−Dx(γutxuxx) +Dx(

β
2
utxuxx)

− Dx(
β
2
ututxx) +Dx(βuxu

2
xx)−Dx(uxutxuxx)

− Dx(
β
2
u2
tx) +Dt(

β
2
utxuxx).

(36)

Then by taking these differentials across and adding them to the conserved flows,

this satisfies the conservation law. The modified conserved quantity are now labeled

T̃ i, where Dt(T̃ 1) +Dx(T̃ 2) = 0 along the equation, viz.,

T̃ 1 = T 1 − β
2
utxuxx,

T̃ 2 = T 2 − γu2
xx + γutxuxx − β

2
utxuxx

+ β
2
ututxx − βuxu

2
xx − uxutxuxx +

β
2
u2
tx

(37)

(ii) X = ∂x, W = −ux
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With

T 1 =
α

2
u2
x −

β

2
uxuxxx +

β

2
u2
xx

and

T 2 = −β

2
utxuxx +

γ

2
u2
xx + αu3

x − βuxutxx − βu2
xuxxx − γuxuxxx + βutxuxx

we get

Dt(T
1) +Dx(T

2) = −1
2
β(uxutxxx − uxxutxx), (38)

so that, since −1
2
β(uxutxxx−uxxutxx) has derivative consequences, −1

2
β(Dx(uxutxx)−

Dt(u
2
xx)), so that a redefinition leads to

T̃ 1 = T 1 − 1
2
βu2

xx,

T̃ 2 = T 2 + 1
2
βuxuxx,

(39)

(iii) X = n(t)∂u, W = n(t)

Here, we get

T 1 = −α

2
n(t)ux +

β

2
n(t)uxxx

and

T 2 = −α

2
n(t)uxut −

α

2
n(t)u3

x −
β

2
n(t)uxu

2
xx −

β

2
n(t)utxuxx

−γ

2
n(t)u2

xx −
β

2
nt(t)uxx +

α

2
nt(t)u,

so that

Dt(T
1) +Dx(T

2) = −1
2
n(t)βutxxx, (40)

and

T̃ 1
2 = T 1,

T̃ 2
2 = T 2 + 1

2
n(t)βutxx.

(41)

3.DISCUSSION AND CONCLUSION

We used the Noether identity to find symmetry generators and then conservation

laws for some high order equations containing mixed derivatives in the highest term.

All the conserved vectors produce extra terms that become essential parts of the

constructed conserved vector for the equation in question.



R. Narain and A. H. Kara 741

4. REFERENCES

[1] S. Anco and G. Bluman, Direct construction method for conservation laws of

partial differential equations Part I: Examples of conservation law classifications

European J. of Appl. Maths. 13 (2002), 545-566.

[2] S. Anco and A. H. Kara, preprint ‘Symmetry invariance of conservation laws’

2009.

[3] A. Constantin and J. Lennels, On the Inverse Scattering Approach to the

Camassa-Holm Equation Journal of Nonlinear Mathematical Physics 10(3)

(2003), 252-255.

[4] A. N. W. Hone, The associated Camassa-Holm equation and the KdV equation

J. Phys. A: Math. Gen. 32 (1999) 307-314.

[5] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Rei-

del Publishing. Co., Dordrecht, (1985).

[6] A. H. Kara and F. M. Mahomed, Relationaship between symmetries and con-

servation laws Int. J. Theoretical Physics, 39(1) (2000), 23-40.

[7] A. H. Kara and F. M. Mahomed, Noether-type symmetries and conservation

laws via partial Lagrangians, Nonlinear Dynamics, 45(3-4) (2006), 367–383.

[8] J. Lennels, Weak geodesic flow and global solutions of the Hunter-Saxton equa-

tion Discrete and continuous dynamical systems, 18(4) (2007), 643-656.

[9] R. Narain and A H Kara, On conservation laws of some ‘high-order’ nonlin-

ear p.d.e.s using variational and ‘partial’ variational principles, submitted to

Physics Letters A.

[10] E. Noether, Invariante Variationsprobleme, Nachr. König. Gesell. Wissen.,

Göttingen, Math.-Phys. Kl. Heft 2, 235 (1918).


