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Abstract- This article is concerned with the analytic solution for a nonlinear flow

problem of an incompressible viscous fluid. The fluid is taken in a channel having

two weakly permeable moving porous walls. An incompressible fluid fills the porous

space inside the channel. The fluid is magnetohydrodynamic in the presence of a

time-dependent magnetic field. Lie group method is applied in the derivation of

analytic solution. The effects of the magnetic field, porous medium, permeation

Reynolds number and wall dilation rate on the axial velocity are shown and dis-

cussed.
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1. INTRODUCTION

The two-dimensional flow of viscous fluid in a porous channel appears very use-

ful in many applications. Hence many experimental and theoretical attempts have

been made in the past. Such studies have been presented under the various as-

sumptions like small Reynolds number Re, intermediate Re, large Re and arbitrary

Re. The steady flow in a channel with stationary walls and small Re has been

studied by Berman [1]. Dauenhaver and Majdalani [2] numerically discussed the

two-dimensional viscous flow in a deformable channel when −50 < Re < 200 and

−100 < α < 100 (α denotes the wall expansion ratio). In another study, Majdalani

et al [3] analyzed the channel flow of slowly expanding-contracting walls which leads

to the transport of biological fluids. They first derived the analytic solution for small

Re and α and then compared it with the numerical solution.

The flow problem given in study [3] has been analytically solved by Boutros et

al [4] when Re and α vary in the ranges −5 < Re < 5 and −1 < α < 1. They used

the Lie group method in this study. Mahmood et al [5] discussed the homotopy
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perturbation and numerical solutions for viscous flow in a deformable channel with

porous medium. Asghar et al [6] computed exact solution for the flow of viscous

fluid through expanding-contracting channels. They used symmetry methods and

conservation laws.

The purpose of this paper is to generalize the flow analysis of [4] into two direc-

tions. The first generalization is concerned with the influence of variable magnetic

field while the second accounts for the features of porous medium. Like in [4], the

analytic solution for the arising nonlinear flow problem is given by employing the

Lie group method, with Re and α as the perturbation quantities. Finally, the graphs

for velocity and shear stress are plotted and discussed.

2. PROBLEM STATEMENT

We consider an incompressible and magnetohydrodynamic (MHD) viscous fluid

in a rectangular channel with walls of equal permeability. An incompressible fluid

saturates the porous space between the two permeable walls which expand or con-

tract uniformly at the rate α (the wall expansion ratio). In view of such configura-

tion, symmetric nature of flow is taken into account at y = 0. Moreover, the fluid

is electrically conducting in the presence of a variable magnetic field (0, δH(t), 0).

Here δ is the magnetic permeability and H is a magnetic field strength. The in-

duced magnetic field is neglected under the assumption of small magnetic Reynolds

number. The physical model of the flow is shown in Figure 1.

Figure 1: Coordinate system and bulk fluid motion

In view of the aforementioned assumptions, the governing equations can be written
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as
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∂ū
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with the following conditions

(i) ū = 0, v̄ = −Vw = −Aȧ at ȳ = a(t),

(ii)
∂ū

∂ȳ
= 0, v̄ = 0 at ȳ = 0,

(iii) ū = 0 at x̄ = 0. (4)

In above expressions ū and v̄ are the velocity components in x̄ and ȳ-directions,

respectively, ρ is the fluid density, P̄ is the pressure, t is the time, s is the kinematic

viscosity, ϕ and k are the porosity and permeability of porous medium, respectively,

r is the electrical conductivity of fluid, Vw is the fluid inflow velocity, A is the

injection coefficient corresponding to the porosity of wall and ϕ = Vf/Vc (where Vf

and Vc, respectively, indicate the volume of the fluid and control volume).

The dimensional stream function Ψ(x̄, ȳ, t) satisfies Eq.(1) according to the def-

initions of ū and v̄ given below
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when y = ȳ/a(t). Substituting Eq.(5) into Eqs.(2)-(4) and then relating the non-

dimensional variables to the dimensional ones
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we obtain
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1
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+
1

R
Ψy +NH2(t)Ψy = 0, (7)

Ψxt̄ +ΨyΨxx −ΨxΨxy − Py −
1

Re

[αyΨxy +Ψxyy +Ψxxx]

+
1

R
Ψx = 0 (8)

and

(i) Ψy = 0, Ψx = 1 at y = 1,

(ii) Ψyy = 0,Ψx = 0 at y = 0,

(iii) Ψy = 0 at x = 0, (9)

where

u = Ψy, v = −Ψx (10)

and subscripts denote the partial derivatives, N is the magnetic parameter, Re(=

aVw/s) is the permeation Reynolds number and R is porosity parameter. It should

be pointed out that the present problem reduces to the problem studied in [4] when

N = 0 and R → ∞. Further aȧ = constant and α = aȧ/s, which implies that

a = (1 + 2.5αta−2
0 )1/2. Here a0 denotes the initial channel height.

3. SOLUTION

In this section we solve the present problem by following closely the Lie group

method in [4] under which Eqs.(7) and (8) remain invariant. Following the method-

ology and notations in subsection (3.1) of [4] we note that the difference only occurs

in the definitions of ∆1 and ∆2. In order to avoid repetition we only write the values

of ∆1 and ∆2 here as

∆1 = Ψyt̄ +ΨyΨxy −ΨxΨyy + Px −
1

Re

[αΨy + αyΨyy +Ψxxy +Ψyyy]

+
1

R
Ψy +NH2(t)Ψy,

(11)

∆2 = Ψxt̄ +ΨyΨxx −ΨxΨxy − Py −
1

Re

[αyΨxy +Ψxyy +Ψxxx] +
1

R
Ψx,

where for other definitions and calculations, the readers may consult [4].
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Now following the detailed procedure as given in [4] we finally obtain
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with

u = x
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dy
, v = −G (14)

and G satisfies
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along with

(i)
dG(1)

dy
= 0, (ii) G(1) = 1, (iii)

d2G(0)

dy2
= 0, (iv) G(0) = 0 (16)

and K = Re. Writing

G = G1 +ReG2 +R2
eG3 + 0(R3

e),

G1 = G10 + αG11 + α2G12 + 0(α3),

G2 = G20 + αG21 + α2G22 + 0(α3),

G3 = G30 + αG31 + α2G32 + 0(α3),
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we solve the problem consisting of equation (15) and conditions given in (16) using

second-order double perturbation and finally arrive at

G1(y) =
1
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]
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G3(y) =
y(y2 − 1)2

1271350080000R2

[
1260α(R2(1001N2(5y2 − 9)(25y2 − 37)

−26N(875y6 + 18305y4 + 293y2 − 51137)

−4060y8 + 63133y6 + 357696y4 + 427177y2 + 394166)

+26R(77N(5y2 − 9)(25y2 − 37)− 875y6 − 18305y4 − 293y2

+51137) + 1001(5y2 − 9)(25y2 − 37)) + α2(105Ry8((6510N

−46873)R + 6510)− 42y6(R(350N((1339N− 7698)R + 2678)

+3099111R− 2694300) + 468650) + 14y4(R(900N((6552N

−10585)R + 13104)− 2957491R− 9526500) + 5896800)

−y2(R(84N((1262105N + 3260532)R + 2524210)

−95806709R + 273884688) + 106016820)R + 3R(42N((245908N

+2413431) + 491816) + 100425529R + 101364102) + 783825R2y10

+30984408) + 491400(R(7y4((55N− 102)R + 55)− 2y2(77N(

(10N− 23)R + 20) + 530R) + 77N((44N + 69)R + 88)

+28Ry6 − 1406R + 1771(2y2 + 3)) + 308(11− 5y2))

]
. (18)

It can be easily noted that for N = 0 and R → ∞, G(y) reduces to the result

presented in [4], provided we use a first-order double perturbation. This shows

confidence in the present calculations. The shear stress at the wall with y = 1 is [4]

τw = Kx
d2G(1)

dy2
. (19)
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The velocity components through Eqs.(14) and (18) are given by

u = x
dG

dy
, (20)

v = −G. (21)

4. RESULTS AND DISCUSSION

4.1. Self-axial velocity

Figures 2 and 3 demonstrates the behaviour of the self axial velocity u/x for

magnetic parameter N = 0.5, porosity parameter R = 0.5, permeation Reynolds

number Re = −1 and 1, at −1 ≤ α ≤ 1. Figure 2 shows the case of Re = −1. When

α > 0, the flow towards the centre becomes greater, this leads to the axial-velocity

to be greater near the centre. We noticed that this behaviour changes when α < 0,

that is, the flow towards the centre results in lower axial velocity near the centre and

higher near the wall. Similarly conclusions can be made for figure 3, when Re = 1,

we have the same pattern as in figure 2.
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Figure 2: Self-axial velocity profiles over a range of α at N = 0.5, Re = −1 and

R = 0.5
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Figure 3: Self-axial velocity profiles over a range of α at N = 0.5, Re = 1 and

R = 0.5
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From the figures above, we can see that the behaviour of the graphs is a cosine profile.

Comparing analytical and numerical solutions, the percentage error increases as N

increases for all |α|, see Tables 1, 2 and 3.

Table 1: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for R = 0.5, Re = −1, α = −0.5.

Analytical Method Numerical Method Percentage Error (%)

N= 0.5 1.374237 1.375731 0.108609

N = 1.0 1.381895 1.384237 0.169198

N = 1.5 1.389799 1.393274 0.249420

Table 2: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for R = 0.5, Re = −1 and α = 0.0.

Analytical Method Numerical Method Percentage Error (%)

N = 0.5 1.398273 1.400185 0.136611

N = 1.0 1.406663 1.409625 0.210186

N = 1.5 1.415323 1.419678 0.306770

Table 3: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for R = 0.5, Re = −1 and α = 0.5.

Analytical Method Numerical Method Percentage Error (%)

N = 0.5 1.423053 1.425483 0.170456

N = 1.0 1.432188 1.435905 0.258803

N = 1.5 1.441616 1.447026 0.373840

For porosity parameter R, the axial velocity and the percentage error between ana-

lytical and numerical solutions decreases as R increases, for the same |α|, see Tables
4, 5 and 6.

Table 4: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for N = 0.5, Re = −1 and α = −0.5.

Analytical Method Numerical Method Percentage Error (%)

R = 0.5 1.374237 1.375731 0.108609

R = 1.0 1.359664 1.360126 0.033979

R = 1.5 1.355025 1.355296 0.019936
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Table 5: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for N = 0.5, Re = −1 and α = 0.0.

Analytical Method Numerical Method Percentage Error (%)

R = 0.5 1.398273 1.400185 0.136611

R = 1.0 1.382302 1.382914 0.044241

R = 1.5 1.377219 1.377581 0.026294

Table 6: Comparison between analytical and numerical solutions for self-axial ve-

locity u/x at y = 0.3 for N = 0.5, Re = −1 and α = 0.5.

Analytical Method Numerical Method Percentage Error (%)

R = 0.5 1.423053 1.425483 0.170456

R = 1.0 1.405658 1.406468 0.057581

R = 1.5 1.400120 1.400610 0.035000

4.2. Shear stress

Figures 12, 13 and 14 illustrate the effects of varying governing parameters on the

character of the shear stress at the wall. For a suction-contracting process (Re = −1

and α < 0), the shear stress is positive until expansion is sufficiently large, while for

a suction-expansion process (Re = 1 and α > 0) the shear stress turns negative.
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Figure 4: Shear stress profiles over a range of α at N = 0.5, Re = −1 and R = 0.5

We noticed that, the wall shear stress decreases as the Reynolds numberRe increases,

see Table 13.
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Table 7: Comparison between analytical and numerical solutions for shear stress τω

at x = 2 for N = 0.5 and α = −1.

Analytical Method Numerical Method Percentage Error (%)

Re = −1 6.526164 6.483047 0.665074

Re = 1 -7.731125 -7.755944 0.320003

5. CONCLUSION

In this paper, we have generalized the flow analysis of [4] with the influence of

magnetic field and porous medium. The analytical solution for the arising nonlin-

ear problem was obtained by using Lie symmetry technique in conjunction with

a second-order double perturbation method. We have studied the effects of mag-

netic field (N) and porous medium (R) on the self-axial velocity and the results

are plotted. We compared the analytical solution with the numerical solution for

self-axial velocity at different values of N and R. We found that as N increases

the self-axial velocity increases and as R increases the self-axial velocity decreases.

Here we have noticed that the analytical results obtained matches quite well with

the numerical results for a good range of these parameters. We also noticed that

for all cases the self-axial velocity have the similar trend as in [4], that is, the axial

velocity approaches a cosine profile. Finally, we observed that when N = 0 and R

approaches infinity our problem reduces to the problem in [4] and our results (an-

alytical and numerical) also reduce to the results in [4], with the use of first-order

double perturbation method.
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