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Abstract- We find a new class of exact solutions to the Einstein-Maxwell equations

which can be used to model the interior of charged relativistic objects. These solu-

tions can be written in terms of special functions in general; for particular parameter

values it is possible to find solutions in terms of elementary functions. Our results

contain models found previously for uncharged neutron stars and charged isotropic

spheres.
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1. INTRODUCTION

The Einstein-Maxwell system of field equations are applicable in modelling rel-

ativistic astrophysical systems. We need to generate exact solutions to these field

equations to model the interior of a charged relativistic star that should be matched

to the Reissner-Nordstrom exterior spacetime at the boundary. A general treatment

of nonstatic spherically symmetric solutions with vanishing shear was performed

by Wafo Soh and Mahomed [1] using symmetry methods. The matching of non-

static charged perfect spheres to the Reissner-Nordstrom exterior was considered

by Mahomed et al. [2] who showed that the Bianchi identities restrict the num-

ber of solutions. Particular models generated can be used to model the interior

of neutron stars as demonstrated by Tikekar [3], Maharaj and Leach [4] and Ko-

mathiraj and Maharaj [5]. Charged spheroidal stars have been widely studied by

Sharma et al. [6] and Gupta and Kumar [7]. There exist comprehensive studies of

cold compact objects by Sharma et al. [8], analysis of strange matter and binary

pulsar by Sharma and Mukherjee [9] and quark-diquark mixtures in equilibrium by

Sharma and Mukherjee [10], in the presence of the electromagnetic field. Charged

relativistic matter is important in the modelling of core-envelope stellar systems as

demonstrated by Thomas et al.
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[11], Tikekar and Thomas [12] and Paul and Tikekar [13]. The recent treatment

of Thirukkanesh and Maharaj [14] deals with charged anisotropic matter with a

barotropic equation of state which is consistent with dark energy stars and charged

quark matter distributions.

The exact solution of Tikekar [3] is spheroidal in that the geometry of the space-

like hypersurfaces generated by t=constant are that of a 3-spheroid. This condition

of a spheroid helps to mathematically interpret the solution since it provides a trans-

parent geometrical interpretation. On physical grounds we find that this solution

can be applied to model superdense stars with densities of the order 1014 g cm3. The

physical features of the Tikekar model are therefore consistent with observation, and

consequently it attracts the attention of several researches as a realistic description

of the stellar interior of dense objects. This solution was extended by Komathiraj

and Maharaj [5] to include the electromagnetic field, with desirable physical fea-

tures. In this paper we show that a wider class of solutions to the Einstein-Maxwell

system is possible by adapting the form of the gravitational potentials. Our inten-

tion is to obtain simple forms for the solutions that are physically reasonable and

may be used to model a charged relativistic sphere.

2. SPHERICALLY SYMMETRIC SPACETIME

The metric of static spherically symmetric spacetimes in curvature coordinates

can be written as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdϕ2) (1)

where ν(r) and λ(r) are two arbitrary functions. For charged perfect fluids the

Einstein-Maxwell system of field equations is given by
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for the line element (1). The quantity ρ is the energy density, p is the pressure, E

is the electric field intensity and σ is the proper charge density. To integrate the

system (2) it is necessary to choose two of the variables ν, λ, ρ, p or E. In our

approach we specify λ and E.
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In the integration procedure, we make the choice

e2λ =
1− kr2/R2

1− lr2/R2
(3)

where k and l are arbitrary constants. Note that the choice (3) ensures that the

metric function e2λ is regular and finite at the centre of the sphere. When k = −7

and l = 1, in the absence of charge, we regain the Tikekar interior metric [3] which

models a superdense neutron star. Also observe that when l = 1 we regain the

metric function considered by Komathiraj and Maharaj [5] which generalises the

Maharaj and Leach [4] and Tikekar [3] models. Therefore particular choices of the

parameters k and l produce regular charged spheres which are physically reasonable.

Also the choice (3) ensures that charged spheres generated, as exact solutions to the

Einstein-Maxwell system, contain well behaved uncharged models when E = 0. On

eliminating p from (2b) and (2c), for the choice (3), the condition of pressure isotropy

with a nonzero electric field becomes(
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which is nonlinear.

To linearise the above equation it is now convenient to introduce the transfor-

mation

ψ(x) = eν (5a)

x2 = 1− lr2/R2 (5b)

where l ̸= 0. This transformation helps to simplify the integration procedure but

changes the form of the potentials and matter variables. Then (4) becomes
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l

)
ψ = 0 (6)

in terms of the new dependent and independent variables ψ and x respectively.

Equation (6) must be integrated to find ψ, i.e. the metric function λ. Note that the

Einstein-Maxwell system (2) implies
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in terms of the variable x. Note that we have essentially reduced the solution of the

field equations to integrating (6). It is necessary to specify the electric field intensity

E to complete the integration. Only a few choices for E are physically reasonable

and generate closed form solutions. We can reduce (6) to simpler form if we let

E2 =
αkl(x2 − 1)

R2(l − k + kx2)2
(8)

where α is constant. When α = 0 or k = 0 there is no charge. The form for E2 in

(8) vanishes at the centre of the star, and remain continuous and bounded in the

interior of the star for a wide range of values of the parameters α, k and l. Upon

substituting the choice (8) into (6), we obtain

l(l − k + kx2)ψ̈ − klxψ̇ + k(k − l + α)ψ = 0 (9)

which is the master equation for the system (7). We expect that our investigation

of equation (9) will produce viable models of charged stars since the special cases

α = 0 and α ̸= 0, k ̸= 0, l = 1 yields models consistent with neutron stars.

3. NEW SOLUTIONS

As the point x = 0 is a regular point of (9), there exists two linearly independent

series solutions with centre x = 0. Thus we must have

ψ(x) =
∞∑
i=0

aix
i (10)

where ai are the coefficients of the series. For an acceptable solution we need to find

the coefficients ai explicitly. On substituting (10) in (9) we obtain after simplification

l(l − k)(i+ 1)(i+ 2)ai+2 + k[α+ k − l + li(i− 2)]ai = 0, i ≥ 0 (11)

The equation (11) is the basic difference equation governing the structure of the

solution. It is possible to express the general form for the even coefficients and odd

coefficients in terms of the leading coefficient a0 and a1 respectively by using the

principle of mathematical induction. We generate a pattern
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(
k
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)i
1
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for the even coefficients a0, a2, a4 . . .. Also we find the pattern
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for the odd coefficients a1, a3, a5 . . .. Here the symbol
∏

denotes multiplication.

From (10), (12) and (13), we can write the general solution of (9) as

ψ(x) = a0ψ1(x) + a1ψ2(x) (14)

where we have set
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Thus we have found the general solution to the differential equation (9) for the

particular choice of the electric field (8). Series (15a) and (15b) converge if there

exists a radius of convergence which is not less than the distance from the centre of

the series to the nearest root of the leading coefficient in (9). This is possible for a

range of values of k and l.

The general solution (14) is given in the form of a series which may be used to

define new special functions. For particular values of the parameters α, k and l it

is possible for the general solution to be written in terms of elementary functions

which is a more desirable form for the physical description of a charged relativistic

star. Solutions that can be written in terms of polynomials and algebraic functions

can be found. This is a lengthy and tedious process and we therefore do not provide

the details; the procedure is similar to that presented in Komathiraj and Maharaj

[5] which can be referred to. The solutions found can also be verified with the help

of software packages such as Mathematica. Consequently we present only the final

solutions avoiding unnecessary details.

Two classes of solutions in terms of elementary functions can be found. These

can be written in terms of polynomials and algebraic functions. The first category

of solution for ψ(x) is given by

ψ(x) = A
n∑

j=0

(−γ)j (n+ j − 2)!

(n− j)!(2j)!
x2j

+B(l − k + kx2)3/2
n−2∑
j=0

(−γ)j (n+ j)!

(n− j − 2)!(2j + 1)!
x2j+1 (16)
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with the values

γ = 4− 4l

4ln(n− 1) + α

k + α = l[2− (2n− 1)2]

The second category of solution for ψ(x) has the form

ψ(x) = A
n∑

j=0

(−µ)j (n+ j − 1)!

(n− j)!(2j + 1)!
x2j+1

+B(l − k + kx2)3/2
n−1∑
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with the values

µ = 4− 4l

4ln2 − l + α

k + α = 2l(1− 2n2)

where A and B are arbitrary constants and x2 = 1− lr2/R2.

4. SPECIAL CASES

From our general class of solutions (16) and (17), it is possible to generate

particular cases found previously. These can be explicitly regained directly from

the general series solution (14) or the elementary functions (16) and (17). We

demonstrate that this is possible in the following classes.

We set k+α = −7l(n = 2). Then γ = 4(7l+α)/(8l+α) and it is easy to verify

that equation (16) becomes
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where A′ = A/2 and B′ = 2B(8l + α)3/2 are new constants. Further setting α = 0

and l = 1, we obtain
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and x2 = 1− r2/R2. Thus we have regained the Tikekar model [3] which is a viable

model in the modelling of superdense stars.
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We set k + α = −2l(n = 1). Then µ = 4(2l + α)/(3l + α) and (17) becomes

ψ(x) = A′′x

(
1− 2
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)
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where are A′′ = A and B′′ = B(3l + α)3/2 are new constants. Further setting α = 0

and l/R2 = C/2 (k/R2 = −C) and letting X = Cr2 we obtain

ψ̃ =
A′′

9
√
2
(2−X)1/2(5 + 2X) +

B′′

33/2
(1 +X)3/2

where we have set ψ̃ = ψ(X). Thus we have regained the Durgapal and Bannerji

[15] model which is widely used in the modelling of neutron stars.

If we set l = 1 and α = 0 then (16) and (17) reduce to the corresponding expres-

sions in the solution of Maharaj and Leach [4] which implies a wide family of models

for uncharged relativistic spheres which have the advantage of being expressed in

elementary functions.

If we set l = 1 then (16) and (17) contain the solution of Komathiraj and Maharaj

[5] for charged spheres which are generalizations of earlier models with spheroidal

geometry.

5. DISCUSSION

We have studied the Einstein-Maxwell system of equations for a particular choice

of the electric field intensity. The gravitational potential was generalised to include

the spheroidal geometry of the hypersurfaces t=constant of previous investigations.

When l = 1 then we regain the Tikekar [3] model and other exact solutions found

previously. We demonstrated that it was then possible to reduce the condition

of pressure isotropy to a second order linear ordinary differential equation. This

equation can be solved in general using the method of Frobenius and the solution

are in terms of new special functions. Solutions in terms of elementary functions

can be extracted from the general solution for specific parameter values. Particular

models studied previously are contained in our general class of solution. These

solutions may be useful in studying the physical behaviour of dense charged objects

in relativity which will be the objective in future work.

We briefly discuss the behaviour of the matter variables close to the centre. We

can graphically represent the the matter variables in the stellar interior for particular

choices of the parameter values. To this end we have produced Figure 1 with the

help of the software package Mathematica. We have set A = B = C = 1, k = −1
4
,
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l = −1 and α = 3
2
over the interval 0 ≤ r ≤ 1, to generate the relevant plots in

Figure 1. Plots A and B denote the profiles of energy density ρ and the pressure

p; plot C denotes the electric field intensity E2. We observe that these matter

variables remain regular in the interior. We note that the energy density ρ and the

pressure p are positive and finite; they are monotonically decreasing functions in the

interior. The electric field intensity E2 is positive and monotonically increasing in

this interval. Thus the quantities ρ, p and E2 are finite, continuous in the interval.

Figure 1: Plots of the matter variables ρ, p and E2.
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