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Abstract- In this paper, we study and classify the conservation laws of the Zakharov-

Kuznetsov equations. It is shown that these can be obtained by studying the in-

terplay between symmetry generators and ‘multipliers’. This is, particularly, useful

for the higher-order multipliers. As a final note, we include Drinfeld-Sokolov-Wilson

system to demonstrate the usefulness of the approach to systems of pdes.
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1. INTRODUCTION AND BACKGROUND

The class of Zakharov-Kuznetsov equations with power law nonlinearity

ut + aunux + b(uxxx + uxyy) = 0, (1)

has recently been a subject of extensive study in plasma physics, for e.g., [2, 3, 4, 5].

There are some interesting detailed accounts given in these references. However,

none, it seems, categorizes analytic, exact or invariant solutions or studies the un-

derlying conservation laws that are related to or independent of the symmetry prop-

erties of the equation. In this paper, an attempt at an analysis of both these aspects

of the equation are done.

We include Drinfeld-Sokolov-Wilson system to demonstrate the usefulness of the

approach to systems of pdes too.

The use of symmetry properties of a given system of partial differential equations

to construct or generate new conservation laws from known conservation laws has

been investigated [7, 8].

In this paper, we apply the recently established notion [1] that the symmetry

invariance properties of the multipliers lead to a large class of conserved flows that

would not be provided by variational techniques or the standard methods especially

the higher-order multipliers.
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Consider an rth-order system of partial differential equations (PDEs) of n inde-

pendent variables x = (x1, x2, . . . , xn) andm dependent variables u = (u1, u2, . . . , um)

Gµ(x, u, u(1), . . . , u(r)) = 0, µ = 1, . . . , m̃, (2)

where u(1), u(2), . . . , u(r) denote the collections of all first, second, . . ., rth-order par-

tial derivatives, that is, uα
i = Di(u

α), uα
ij = DjDi(u

α), . . . respectively, with the total

differentiation operator with respect to xi given by

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ . . . , i = 1, . . . , n, (3)

where the summation convention is used whenever appropriate.

A current Φ = (Φ1, . . . ,Φn) is conserved if it satisfies

DiΦ
i = 0 (4)

along the solutions of (2).

It can be shown that every admitted conservation law arises from multipliers

Qµ(x, u, u(1), . . .) such that

QµG
µ = DiΦ

i (5)

holds identically (i.e., off the solution space) for some current Φi ‘modulo a curl’.

When the PDE system is variational, multipliers are variational symmetries. There

is a determining system for finding multipliers (and hence conservation laws) for any

given PDE system. Then, the conserved density

is determined by a homotopy formula like∫ 1

0
uΛ(t, x, λu, λux, λuxx, . . .)dλ, where Λ = δ

δu
Φt and δ

δu
is the Euler operator (see

[6] for details).

Our method resorts mainly to the following theorem [1].

Theorem 0.1 If Φi is a conserved current with multiplier Qµ then Φi
X := prX̂Φi

is also a conserved current and has multiplier QX
µ := Q′

µ(P ) + R̂∗(Qµ) where R̂∗

is the adjoint of the operator R̂. In the case of a point symmetry, this becomes

Φi
X = prXΦi +2Φ[iDjξ

j] modulo curls and QX
µ = prXQµ +QµDiξ

i +R∗(Qµ) where

R = R̂ + ξiDi ie prXGµ = R(Gµ).

2. RESULTS

The symmetry and conservation laws structure splits into two cases (i) n ̸= 1

and (ii) n = 1.
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(i) It can be shown that the point symmetry generators of (1) for this case is

a four-dimensional Lie algebra spanned with basis are time and space translations

X1 = ∂t, X2 = ∂x, X3 = ∂y and scaling X4 =
1
3
x∂x +

1
3
y∂y + t∂t − 2

3n
u∂u.

In this section we construct multipliers that have the form determined by the ray

invariance condition in Theorem 1.1, viz., XQ = (λ+ R)Q, where R is determined

by the action of X on the PDE and ‘some’ divergence term.

As a first case, we consider X2 for which R = 0. The invariants of the equation

XQ = λQ are given by the system

dx

1
=

dt

0
=

du

0
=

dut

0
=

dux

0
=

duxx

0
=

duxt

0
= . . . =

duxxx

0
= . . . =

dQ

λQ

so that, for e.g.,

Q = eλxf(t, u, θ, ϵ, µ, κ, ν, η), (6)

where θ = ux, ϵ = ut, µ = uxx, κ = uxt, ν = utt and η = uxxx. Since the Euler

operator annihilates a total divergence, i.e., δ
δu
DiΦ

i = 0, we require

δ

δu
(Q(1)) = 0 (7)

wherein we impose the form of Q to be as in (6). The greater the order of the

assumed derivative of Q, the more cumbersome the expansion of the left hand side

of (7). We have extensively employed the use of software to expand (7),

separate the resultant by monomials and solve the overdetermined system of

PDEs - this would otherwise be impossible and the interesting forms of Q and,

hence, the conserved flows would be lost (to some extent, the finer details can be

seen for the KdV equation in [6]). In summary, we obtain the multipliers

Q1 = uyy + uxx +
a

b(n+ 1)
un+1, Q2 = u, Q3 = f(y)

where f(y) is an arbitrary function of y and each giving rise to corresponding con-

served flows. We study the association of the conserved flows with symmetry by

studying the action of the symmetries on the multipliers Qi. Firstly, notice that

there are no first-order (in derivatives) multipliers but we do have a second-order

multiplier Q1. This action is enumerated below as

Xi(Q1) = 0, i = 1, 2, 3

X4(Q1) = −2

3
(1 +

1

n
)Q1, (8)
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Xi(Q2) = 0, i = 1, 2, 3

X4(Q2) = − 2

3n
Q2, (9)

Xi(Q3) = 0, i = 1, 2

X3(Q3) = f ′(y) = g(y), (10)

X4(Q3) =
1

3
yf ′(y) = h(y).

Thus, Q1 and Q2 are strictly invariant under Xi for i = 1, 2, 3 but ray invariant

under X4 with λ = −2
3
(1 + 1

n
) and − 2

3n
, respectively. Q3 is strictly invariant under

X1 and X2, ray invariant under X3 but not invariant with respect to X4. The strict

invariant condition is synonymous with the association of the symmetry Xj with

the resultant conserved vector from the multiplier Qk.

As an example, we note that the conserved flow corresponding to Q1 for n = 1
2

is

Φx =
1

6b
√
u

(
−2abuy

2 + 4abu(2uyy + 3uxx) + b
√
u (3utux

+b ((uyy + uxx)(uyy + 3uxx)− uy(uyyy + uxxy)))

+u3/2(12a2 + b(−3uxt + b(uyyyy + uxxyy)))
)
,

Φx =
1

6b
√
u

(
2abuy

2 + 4abuuxy +
√
u (3utuy + b (−ux(uyyy + uxxy) (11)

+2(uxy(uyy + uxx) + uy(uxyy + uxxx)))

+u3/2(3uyt + b(uxyyy + uxxxy)))
)
,

Φt =
u(8a

√
u+ 3b(uyy + uxx))

6b
(ii) For n = 1, we have an additional symmetry X5 = at∂x +du and the calcula-

tions for the multipliers yield an additional one Q4 = −atu + x. The action of the

Xi’s (i = 1, . . . , 5) on Q4 are as follows,

X1(Q4) = −aQ2,

X2(Q4) = 1,

X3(Q4) = 0,

X4(Q4) =
1
3
Q4,

X5(Q4) = 0.

(12)
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For this case, therefore, Q4 is strictly invariant under X3 and X5 so that the corre-

sponding conserved vector is associated with X3 and X5. Also, as X2(Q4) = f(y) =

Q3 for f =constant which implies that the multiplier is obtainable by the symmetry

action of X2 on Q4. Similarly, since X1(Q4) = −aQ2, the action of X1 on Q4 yields

Q2 so that Q2 as an independent multiplier can be dispensed with. That is, the

conserved vector from Q2 would not be in the basis set of conservation laws (see

[8]).

The components of the conserved vector corresponding to the second-order mul-

tiplier Q1 is

Φx = − 1
6bu

(24abux
2 + au3(3a+ 4buxy + 6buxx)

+2bu(3utux + uyy(6a+ 2buxy + 3buxx)

−b(uyyyux + 3uxuxyy − 2uxyuxx − 3uxx
2 − 2uxuxxy + uy(uxyy

+uxxx))) + 2bu2(−3uxt + b(2uxyyy + 3uxxyy − uxxxy))),

Φy = − 1
3u
(12auyux + au3uxx

+u(3utuy − 6auxy + b(uyyuxx + uxx
2 + 3uyuxxy + 3uyuxxx − ux(uxyy

+uxxx)))− u2(3uyt + b(2uxxyy + 3uxxxy − uxxxx))),

Φt = −u(au2+3b(uyy+uxx))

3b
,

Q2 is

Φx = 1
6
(2au3 − b(uy

2 + 3ux
2) + 2bu(uyy + 3uxx)),

Φy = −1
3
b(uyux − 2uuxy),

Φt = 1
2
u2,

Q3 is

Φx = 1
6
(2b(uf ′′ − f ′uy) + f(3au2 + 2b(uyy + 3uxx))),

Φy = −1
3
b(f ′ux − 2fuxy),

Φt = fu,

and Q5 is

Φx = 1
6
(3axu2 − 2a2tu3 − 2abtu(uyy + 3uxx)

+b(atuy
2 + 2xuyy − 6ux + 3atux

2 + 6xuxx)),

Φy = 1
3
b(uy(−1 + atux) + 2(x− atu)uxy),

Φt = xu− 1
2
atu2.

Notes. - systems example.

The Drinfeld-Sokolov-Wilson system

ut + 2vvx = 0

vt − avxxx + 3buxv + 3kuvx = 0

admits a three-dimensional Lie point symmetry algebra spanned by

X1 = ∂t, X2 = ∂x, X3 = −2u∂u − 2v∂v + 3t∂t + x∂x
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with commutator table
X1 X2 X3

X1 0 0 3X1

X2 0 0 X2

X3 −3X1 −X2 0

Its zero order multipliers were shown to be (1, 0), (0, 1) and (3
2
bu, v) ([9])- the first

two are of minimal interest as the corresponding conserved flow yield one equation

in the system. Further detailed calculations, as done previously, shows, in fact, that

a second-order multiplier exists, viz.,

(Q1, Q2) = (a(b− k)uxx + 3(k2 + kb− 2b2)u2 − (k + 2b)v2, 2(avxx − kuv − 2buv)).

The corresponding conserved density (b ̸= k) is

Φt =
1

b− k
[−1

2
(b− k)u2

x − av2x + b(k − 2b)u3 − 2buv2 + k2u3 − kuv2].

The action of the Xi’s (i = 1, 2, 3) on the Qj’s (j=1,2) are

X1(Q
j) = X2(Q

j) = 0,

X3(Q
1) = −4Q1, X3(Q

2) = −4Q2.

Thus, the conserved density Φt and conserved flux are associated with X1 and X2

and not with X3 as the multiplier (Q1, Q2) is ray invariant, as opposed to strictly

invariant, under X3.

Further investigation can be done for various combinations of b and k like k = 2b.

3. CONCLUSION

We have shown that pdes or systems of pdes may have multiplier that are higher-

order (than two in derivatives) and lead to new and nontrivial conservation laws.

A number of possible relationships between the multipliers and Lie point symmetry

generators exist. These have consequences, inter alia, on the basis of conservation

laws of the pde/systems of pdes.
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