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1. INTRODUCTION

A conserved quantity in the context of an Itô integral implies an entity which is

constant on all sample paths for all time indices. The instantaneous drift and diffu-

sion are zero. Trivially this says that these conserved quantities are all Martingales.

That is, their expected value in the future or present is their eventuated values in

the past.

Methods for constructing conserved quantities of SODEs by use of Lie trans-

formations were analyzed for Stratonovich integral based SODEs by Misawa [1]

and Albeverio and Fei [2]. The conserved quantity construction of Misawa [1] and

Albeverio and Fei [2], precludes the necessity for a Lagrangian or a Hamiltonian

formulation. The philosophy followed, highlighted the interplay between the in-

finitesimals of the symmetry operator H and the conserved quantity itself.

The Itô integral construction of the conserved quantities was later pursued by

Ünal [3]. In this contribution Ünal [3] uses both the (Fokker-Planck) FP equation

and its associated SODE to obtain the conserved quantity.

After having reconciled the determining equations obtained in Wafo and Ma-

homed [4] and Ünal [3] via Fredericks and Mahomed [5], we can focus on the con-

served quantity analysis of [3]. We show that the symmetries of the FP equations

are projectable by using the methodology of Mahomed
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and Momoniat [6]. This projectable nature of the temporal infinitesimal was an

ansatz that Gaeta and Quintero [7] enforced on both the FP equation and its asso-

ciated SODE. The work of Ünal [3] shows that in the SODE context, the temporal

infinitesimal need not be a function of time only. This implies that the Lie algebra

generated by the SODE can have non-projectable symmetries which will not belong

to the Lie algebra generated by the FP equation.

In constructing the conserved quantity for Itô integral based SODEs, [3] tries

to combine the determining equations associated with SODEs, which allows for the

said infinitesimal to be non-projectable, with the determining equations based on

the associated FP equation. However, we prove that the symmetries of the FP equa-

tion have to be projectable. Thus we have that only projectable symmetries will

satisfy both the FP equation and its associated SODEs, which is what was utilized

by [7].

In this paper, we first revisit the conserved quantity results of Ünal [3] and jux-

tapose it with the new findings of our deliberations. This scrutiny will be followed

by an attempt to construct a conserved quantity based upon the methodology of [2]

for Stratonovich integral SODEs.

2. CONSERVED QUANTITIES FOR ITÔ INTEGRALS REVISITED

We use the approach of [6] to firstly show that the symmetry operators of the

FP equation

ut + Aij uxixj
+Bi uxi

+ Cu = 0, (1)

are projectable, where repeated indices imply summation. This is easily seen if

we write the Lie operator in characteristic form via the Lie characteristic function

Q = η − τ ut − ξi uxi
, where uxi

indicates the partial derivative of the dependent

variable with respect to the ith spatial variable xi. Then the symmetry condition

for (1) yields the determining equation which is first singled out for the mixed

derivatives in time and spatial variables t and xi, respectively. These result in Q =

α(t)u(t)+β(t, x, u, ux), which after insertion in the remaining determining equation;

followed by separation with respect to the spatial derivatives gives Q = α(t)u(t) +

αj(t, x)uxj
+ γ(t, x, u). The determining equations belonging to the FP equation

can be rewritten in terms of the instantaneous drift and diffusion coefficients of the

Itô SODE f and G, respectively. The original equations are

∂(τAik)

∂t
+

(
ξr
∂Aik

∂xr

− Air
∂ξk
∂xr

− Ark
∂ξi
∂xr

)
= 0 (2)
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∂(ξi − τfi)

∂t
+ fr

∂ξi
∂xr

− ξr
∂fi
∂xr

− Ark
∂2ξi

∂xr∂xk

+ . . .

−2

(
Air

∂2ξk
∂xr∂xk

+ Aik
∂α2(t,x)

∂xk

)
= 0 (3)(

∂

∂t
+ fi

∂

∂xi

− Aik
∂2

∂xi∂xk

)(
α2(t,x) +

∂ξr
∂xr

)
= 0, (4)

where

Aij = −1

2

M∑
k=1

Gk
iG

k
j , (5)

Bi = fi − 2
∂Aik

∂xk

(6)

and

C =

(
∂fi
∂xi

)
− ∂2Aik

∂xi∂xk

. (7)

The dependent variable infinitesimal Φ of the FP equation has the relation

Φ = α1(t, x) + uα2(t, x) (8)

which is associated with the FP symmetry operator as

HFP = τ(t)
∂

∂t
+ ξj(t, x)

∂

∂xj

+ Φ(t, x, u)
∂

∂u
. (9)

Equation (2) can be written as

M∑
l=1

Gl
iY

l(ξk) +
M∑
l=1

Gl
kY

l(ξi) = H

( M∑
l=1

Gl
iG

l
k

)
+

M∑
l=1

Gl
iG

l
kΓ(τ). (10)

Since τ is a projectable in this context, i.e. a function of time only, we have that

Γ(τ) = τ̇ . Further simplification gives

Y l(ξk) = H

(
Gl

k

)
+

1

2
Gl

k Γ(τ), for l = 1,M and k = 1, N. (11)

Equations (3) and (4) can likewise be written as

Γ(ξk) =

(
Γ(τ) +H

)
fk +

M∑
l=1

Gl
kY

l

(
α2(t, x) +

N∑
r=1

∂ξr
∂xr

)
(12)

and

Γ

(
α2(t, x) +

N∑
r=1

∂ξr
∂xr

)
= 0, (13)
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respectively. The projectable symmetries of the Itô SODE satisfy the determining

equations

Y l(ξk) =

(
1

2
Γ(τ) +H

)
Gl

k, (14)

Γ(ξk) =

(
Γ(τ) +H

)
fk, (15)

Y l(τ) = 0 (16)

and

Γ(τ) = Constant, (17)

for l = 1,M and k = 1, N ; where the instantaneous drift and diffusion operators are

respectively

Γ =
∂

∂t
+ fi

∂

∂xi

+
1

2

M∑
l = 1

Gl
i G

l
m

∂2

∂xi∂xm

(18)

and

Y l = Gl
i

∂

∂xi

, (19)

in which the indices i and m run from one to N . Since these projectable symmetries

form a subalgebra of the algebra belonging to the FP equation, we have that the

determining equations associated with the FP equation become

Y l

(
α2(t, x) +

N∑
r=1

∂ξr
∂xr

)
= 0 (20)

and

Γ

(
α2(t, x) +

N∑
r=1

∂ξr
∂xr

)
= 0, (21)

for all l = 1,M . Thus for projectable symmetries of the Itô integral based SODEs we

have that α2(t, x) +
∑N

r=1 ∂ξr/∂r is a conserved quantity as both its instantaneous

drift and diffusion are zero. This is different from what was derived in [3], where

extra terms involving the spatial derivative of the temporal infinitesimal survive, as

a consequence of the preclusion of the fact that the temporal infinitesimal has to be

projectable in the FP equation context.
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3. AN ALTERNATIVE FORMULATION

An alternative formulation for deriving conserved quantities from Lie symmetries

is adapted from [2] who derived conserved quantities from the Lie infinitesimals

for Stratonovich based SODEs. This allows us to use both the projectable and

non-projectable Lie symmetries of the Itô SODEs.

We first need a relation between the instantaneous drift and diffusion operators

and the the symmetry operator. The use of Lie brackets achieves this. The deter-

mining equations (14) and (15) based on the SODEs can be written in terms of Lie

brackets as

[Γ, H] (fk) = Γ(τ) Γ(fk) (22)

and [
Y l, H

]
(Gl

k) =
1

2
Γ(τ)Y l(Gl

k) l = 1,M, (23)

where [Γ, H] = Γ(H)−H(Γ), and where condition (16) dictates that

Y l(H) =
N∑
k=1

Y l(ξk) ∂/∂xk

for all l = 1,M . However the drift and diffusion coefficients of the SODE are

arbitrary, so we have

[Γ, H] = Γ(τ) Γ (24)[
Y l, H

]
=

1

2
Γ(τ)Y l, l = 1,M. (25)

We next define I ≡ {I (t,x)| dI = 0, wherever (14) and (15) are satisfied}. If I ∈
I, i.e. satisfies Γ(I) = 0 and Y l(I) = 0, then H(I) ∈ I, where H satisfies (24) and

(25). Proof. From (24), we have that

Γ(H(I)) = (Γ(H)) (I) +H (Γ(I)) (26)

= [Γ, H] (I) +H(Γ(I)) (27)

= Γ(τ)Γ(I) (28)

= 0. (29)

By (25) we also deduce

Y l(H(I)) =
(
Y l(H)

)
(I) +H

(
Y l(I)

)
(30)

=
[
Y l, H

]
(I) +H(Y l(I)) (31)

=
1

2
Γ(τ)Y l(I) (32)

= 0. (33)
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Let L denote the set of all H satisfying (24) and (25). Having established L it can

be shown that it is a complex Lie algebra.

3.1. Conserved Quantities for First Order SODEs

We propose that for first order SODEs,

I =
N∑
j=1

ξj + Γ(τ) +H(ϕ) (34)

is a conserved quantity, where ϕ (not yet specified) is at least twice continuous with

respect to spacial and temporal variables. This implies

Γ(I) = Γ (ξj) + Γ (H(ϕ)) + Γ (Γ(τ)) (35)

=

N∑
j=1

(Γ(τ) +H) fj + Γ (Hϕ) (36)

which we arrive at by using relations (15) and (17) for first order SODEs. Utilizing (24)

gives

Γ(I) =
N∑
j=1

(Γ(τ) +H) fj + Γ(τ)Γ(ϕ) +HΓ(ϕ), (37)

which simply means that

(H + Γ(τ))

 N∑
j=1

fj + Γ(ϕ)

 = 0. (38)

The function ϕ is chosen such that

N∑
j=1

fj + Γ(ϕ) = 0. (39)

Next we have to show that Y lI is zero. We have

Y lI = Y l

 N∑
j=1

ξj

+ Y l (Hϕ) + Y l (Γ(τ)) (40)

=

N∑
j=1

(
1

2
Γ(τ) +H

)
Gl

j +
1

2
Γ(τ)Y l(ϕ) +HY l(ϕ) (41)

=

(
H +

1

2
Γ(τ)

) N∑
j=1

Gl
j + Y l (ϕ)

 . (42)

This is due to the fact that we proved Y l (Γ(τ)) = 0. The main calculations above were

arrived at in a similar manner to what we did before only now using (25).
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In summary, this forces ϕ to be chosen such that

N∑
j=1

fj + Γ(ϕ) = 0, (43)

and

N∑
j=1

Gl
j + Y l(ϕ) = 0. (44)

3.2. Conserved Quantities based on the FP equation

Although we are limited to only projectable symmetries under the FP equation context,

we can still derive interesting results. By considering only the projectable symmetries of

the associated SODEs, we showed that the FP determining equations simplify to

Γ

(
α2(t, x) +

N∑
j=1

∂ξj
∂xj

)
= 0 (45)

and

Y l

(
α2(t, x) +

N∑
j=1

∂ξj
∂xj

)
= 0. (46)

Focusing now only on (45), we expand in the following manner

Γ(α2) = −Γ(

N∑
j=1

∂ξj
∂xj

) (47)

=
N∑
j=1

[
− ∂

∂xj

(
Γ(ξj)

)
+

∂fk
∂xj

(
∂ξj
∂xk

)
− ∂Ars

∂xj

(
∂2ξj
∂xr xs

)]
(48)

=

N∑
j=1

[
−ξi

∂2fj
∂xi xj

− ∂ξi
∂xj

∂fj
∂xi

+
∂fk
∂xj

(
∂ξj
∂xk

)
− ∂Ars

∂xj

(
∂2ξj
∂xr xs

)]
(49)

which we deduce by using (14) and the fact that the temporal infinitesimal is projectable,

i.e. a function of time only. Thus we have the relation

Γ(α2) =

N∑
j=1

[
−ξi

∂2fj
∂xi xj

− ∂Ars

∂xj

(
∂2ξj
∂xr xs

)]
. (50)
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In a similar fashion we modify (46) as

Y l

(
α2(t, x)

)
= Y l

( N∑
j=1

∂ξj
∂xj

)
(51)

=

N∑
j=1

[
− ∂

∂xj

(
Y l(ξj)

)
+

∂Gl
k

∂xj

(
∂ξj
∂xk

)
(52)

=
N∑
j=1

[
−ξi

∂2Gl
j

∂xi xj
− ∂ξi

∂xj

∂Gl
j

∂xi
+

∂Gl
k

∂xj

(
∂ξj
∂xk

)]
(53)

which we obtain by using (15) and the fact that the temporal infinitesimal is projectable.

Thus we have

Y l

(
α2(t, x)

)
=

N∑
j=1

[
−ξi

∂2Gl
j

∂xi xj

]
. (54)

If we can find an α2(t, x) such that (50) and (54) are satisfied, then we can use the

projectable symmetries of the SODEs to generate conserved quantities. Thus it is also

possible to generate the conserved quantities from the determining equations of the as-

sociated Fokker-Plank equation, but only for the case where τ(t), ξ(t,x) and Φ(t,x, u),

which is what [7] used as an ansatz for both the SODE and the FP equation.

4. EXAMPLE

In the work of [3], it was stated that the temporal infinitesimal of the form

H = τ
∂

∂t

gives rise to a conserved quantity. This is not necessarily the case. The temporal infinites-

imal also has to satisfy the condition.

eϵΓ(τ) = Γ
(
eϵH(t)

)
, (55)

which was derived in [5]. In the concluding example in [3] we have the following SODE

dX(t) = f dt+G dW (t), (56)

where f is the vector(
− 1

2X1(t)

− 1
2X2(t)

)
(57)

and G the vector(
−X2(t)

X1(t)

)
. (58)
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In previous articles [5] and [3], the following symmetry infinitesimals were found

τ(t,X(t)) = C0F0

(
X2

2 (t) +X2
1 (t)

2

)
, (59)

ξ1(t,X(t)) = C1F1

(
X2

2 (t) +X2
1 (t)

2

)
X1(t) + C2F2

(
X2

2 (t) +X2
1 (t)

2

)
X2(t) (60)

and

ξ2(t,X(t)) = C1F1

(
X2

2 (t) +X2
1 (t)

2

)
X2(t)− C2F2

(
X2

2 (t) +X2
1 (t)

2

)
X1(t). (61)

Since the temporal infinitesimal is not projectable, it does not belong to a subalgebra of

the FP equation. However, it is a conserved quantity. Thus only the spatial infinitesimals

are symmetries of the FP equation itself. The temporal infinitesimal in this case, is a

conserved quantity because the drift and diffusion coefficients are not functions of time

and the instantaneous drift of the temporal infinitesimal is zero, i.e. Γ(τ) = 0; thus the

instantaneous drift and diffusion are zero. In this instance it also satisfies the condition

(55). We now construct conserved quantities using both our alternate method and the FP

associated method from [7] presented above.

4.1. Alternative Method

Considering equation (44), we have

Y (ϕ) = x2 − x1 (62)

which implies that

−x2
∂ϕ

∂x1
+ x1

∂ϕ

∂x2
= −x1 + x2, (63)

which easily solves as

ϕ = F3

(
X2

2 (t) +X2
1 (t)

2

)
F4(t)− (X1(t) +X2(t)). (64)

Invoking relation (43) gives

F3

(
X(t)22 +X(t)21

2

)
Ḟ4(t) = 0 (65)

since Γ(F3

(
X2

2 (t)+X2
1 (t)

2

)
) = 0. This forces the following simplification

ϕ = F3

(
X2

2 (t) +X2
1 (t)

2

)
− (X1(t) +X2(t)). (66)

The conserved quantity is constructed by utilizing the non-projectable temporal infinites-

imal in this instance. By invoking the projectable symmetries only, we now implement

the FP associated conserved quantity construction.
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4.2. FP associated conserved quantity construction

The conserved quantity is of the form

I = α2 +

2∑
j=1

∂ξj
∂xj

. (67)

Equation (54) becomes

Y (α2) = 0, (68)

since G has linear components. Thus we have

α2 = F5 (u)F6(t), (69)

where

u =
X2

2 (t) +X2
1 (t)

2
. (70)

By invoking equation (50) we have

Γ(α2) = −∂A22

∂x1

∂2ξ1
∂2x2

− ∂A11

∂x2

∂2ξ2
∂2x1

(71)

where

−∂A11

∂x2

∂2ξ2
∂2x1

= −2x1
(
C1F

′′
1 (u)x1x

2
2 + C1F

′
1(u)x1

+C2F
′′
2 (u)x

3
2 + 2C2F

′
2(u)x2 + C2F

′
2(u)x2

)
, (72)

and

−∂A22

∂x1

∂2ξ1
∂2x2

= −2x2
(
C1 F

′′
1 (u)x2 x

2
1 + C1 F

′
1(u)x2

−C2 F
′′
2 (u)x

3
1 − 2C2 F

′
2(u)x1 − C2 F

′
2(u)x1

)
. (73)

Comparing coefficients of various combinations of the spatial variables which are indepen-

dent of u, we find

F ′′
1 (u) = 0 (74)

which implies

F1(u) =
C1 u

2

2
+ C2u+ C3 (75)

and

F ′′
2 (u) = 0. (76)
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These result in a quadratic form

F2(u) =
C4 u

2

2
+ C5 u+ C6. (77)

Thus we ultimately have

F5(u)Ḟ6(t) = −2C1

(
C2 u

2 + C3 u
)
, (78)

which we can solve as

F5(u) = C2 u
2 + C3 u (79)

and

F6(t) = −2C1 t+ C8. (80)

Eventually we can write our unknown variable α2 as

α2 = (C8 − 2C1 t)
(
C2 u

2 + C3 u
)
, (81)

which implies that our conserved quantity is

I = (C8 − 2C1 t)
(
C2 u

2 + C3 u
)
+ 2C1

(
C2 u

2 + C3 u
)
+ 2C2 F2(u), (82)

since

∂ξ1
∂x1

= C1 F
′
1(u)x

2
1 + C2 F2(u) + C2 F

′
2(u)x1 x2 (83)

and

∂ξ1
∂x1

= C1 F
′
1(u)x

2
2 + C2 F2(u)− C2 F

′
2(u)x1 x2. (84)

Remark. The two methods yield two unrelated conserved quantities. Neither of the

two have been found in the past. It is also interesting to note that the last method further

dictates the form of the arbitrary functions F1 and F2, which generate the two spatial

infinitesimals.

5. CONCLUDING REMARKS

We have derived new methods of constructing conserved quantities. We have noted

that the part of the conservation analysis of Ünal [3] has to satisfy an extra condition

(55) to ensure that the Lie point invariance holds. The two novel ways of constructing

conserved quantities are based on two independent approaches: one based on the pro-

jectable symmetries of the SODEs and thus a sub-algebra of the FP equation and the

other method takes advantage of both the projectable and non-projectable symmetries of

the SODE alone. Both methods precludes the necessity for a Hamiltonian or a Lagrangian

formulation.
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