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Abstract- We apply nonlocal symmetry-like operators to systems of two first and

two second-order ordinary differential equations to seek reduction to quadratures.

The reduction of order of such systems is carried out with the help of analytic con-

tinuation of scalar equations in the complex plane. Examples are taken from the

literature. Precisely it is shown how the reduction to quadratures of a system of

two second-order ordinary differential equations that admits four Lie-like operators

with certain structure is obtainable from a restricted complex ordinary differential

equation possessing a connected two-dimensional complex Lie algebra. A direct

method of integration for a system of two first and second-order equations which

possess nonlocal symmetry-like operators are given. Moreover, we present the use

of nonlocal Noether-like operators to effect double reduction of order of systems of

two second-order equations that arise from the corresponding scalar complex Euler-

Lagrange equations which admit nonlocal Noether symmetry.
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1. INTRODUCTION

The reduction of order of an ordinary differential equation (ODE) is at times

a first step towards the solution of the equation. Lie point symmetries [1] can be

used to reduce a given ODE to quadratures provided there is a sufficient number

of symmetries which constitute a solvable algebra. Once a Lie point symmetry

(also called local symmetry) is known, there are two Lie group theoretic methods

[2, 3, 4, 5] to reduce a first-order ODE to quadrature: one is to make use of canonical

variables which converts the given equation to variables separable form while the

other is the integrating factor method that makes the given equation exact. When

a
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given symmetry is of a particular form one can use invariants of the known symmetry

to reduce the first-order equation to quadrature [6]. However, Lie point symmetries

are not the only symmetries which are useful in providing solutions to differential

equations (DEs) as we point out below.

Over the last few years, nonlocal symmetries of the DEs have also been promoted

as a means to reduce the order of the equation under consideration. A Lie point

symmetry that is lost and appears as a nonlocal symmetry can be used to reduce

the order of the given equation, see e.g. [6, 7, 8, 9, 10, 11, 12]. In the reduction

of the order of an ODE, more than one symmetry may be lost and these can be

nonlocal symmetries [7, 8, 9, 10, 11, 12]. In the case when the original equation

is of second-order, the reduced first-order equation can be expressed in terms of

quadrature [6, 13] via a nonlocal symmetry. It means that Lie point symmetries

as well as nonlocal symmetries can be treated on equal footing in the reduction of

order of a given differential equation.

Recently, the idea of complex Lie point symmetries was introduced in [14, 15] for

complex ordinary differential equations (CODEs) and restricted CODEs (r-CODEs).

The latter can be obtained by allowing a complex function to depend only on a sin-

gle real variable. These authors investigated the symmetry analysis for systems of

partial differential equations (PDEs) and ODEs by introducing the analytic contin-

uation of ODEs in the complex plane including those of variational problems. They

also extended the Lie table for second-order ODEs having two symmetries. The

symmetry analysis of an r-CODE of order two gives nontrivial results for systems

of two second-order ODEs. Here, we present a complex nonlocal symmetry method

for the integration of first and second-order r-CODEs and the corresponding system

of two first and second-order ODEs. A complex nonlocal symmetry splits into two

operators. We call such operators nonlocal symmetry-like operators. A discussion

about these operators for the local case has been studied in [16]. Herein examples

are discussed in detail which show the significance of these operators. It is further

demonstrated that this approach can be used for the double reduction of a system

of two second-order ODEs which corresponds to a given r-CODE.

This paper is divided into two main sections with the aid of several examples

that illustrate our approach. The next Section 2 is devoted to the complex nonlo-

cal symmetry method for systems of two second-order ODEs admitting connected

operators. In Section 3, we discuss how a system of two ODEs admitting nonlo-

cal operators can be converted to quadratures. We present examples of first and

second-order r-CODEs in order to deal with systems of two first and two second-

order ODEs respectively. In Section 4 we consider scalar Euler-Lagrange equations
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which possess complex nonlocal Noether symmetries and first integrals. We adapt

these to associated systems of two real ODEs via complex splitting. The examples

used are mainly taken from the references [6, 17].

2. COMPLEX NONLOCAL SYMMETRY APPROACH

Consider the system of second-order ODEs

f ′′ = w1(x, f, g, f
′, g′),

g′′ = w2(x, f, g, f
′, g′), (1)

where w1 and w2 are both analytic functions of the arguments f, g, f ′, g′. Suppose

that this system can be obtained from the r-CODE

u′′ = w(x, u, u′), (2)

by (x is real)

u = f + ig, w = w1 + iw2. (3)

We have restricted u to depend on x alone. Complex-valued functions of real vari-

ables have been widely used in Fourier Analysis. These have also been utilized in

Fluids (see, e.g. [18]). They have been invoked in recent papers on complex sym-

metry analysis. We utilize them in the sense used by Ali et al [14, 15]. In our case

although w depends on x which is a single real variable and so the Cauchy-Riemann

(CR) equations do not hold, it also depends on u and u′ which are complex and

thus w satisfies the CR equations not in x and y (through z = x + iy) but in f , g,

f ′ and g′ in which case (partial) analytic structure is still intact. Therefore, in this

sense we do use analytic continuation.

The algebraic analysis of the system (1) under real transformations can be un-

derstood from the invariance of (2) under complex transformations. The algebraic

analysis of systems of the form (1) was considered in [14] with respect to the r-CODE

(2). A complex Lie symmetry of an r-CODE (2) gives rise to two Lie-like operators

of the corresponding system (2) [14]. Our aim is to utilize these operators from a

nonlocal viewpoint. The authors [14] used the analytic continuation of ODEs in

the restricted domain to obtain useful results for systems of two second-order ODEs

that correspond to the complex ODEs.

Consider an r-CODE of the form (2) which admits two complex Lie point sym-

metries Z1, Z2, such that [Z1,Z2] = Z1, in appropriate basis and Z2 = α(x, u)Z1,
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where α(x, u) is a complex function, i.e. α(x, u) = α1(x, f) + iα2(x, g). The reduc-

tion of Z1, Z2 to canonical form, i.e. Z1 = ∂/∂U, Z2 = U∂/∂U, transforms (2) to

(X real)

U ′′ = R(X)U ′, ′ = d/dX (4)

which upon invocation of U = F + iG and R(X) = R1(X) + iR2(X) in (4) yields

the following system of two ODEs

F ′′ = R1(X)F ′ −R2(X)G′,

G′′ = R1(X)G′ +R2(X)F ′. (5)

The system of ODEs (5) admits the four Lie-like operatorsX1,Y1,X2 andY2 which

can easily be deduced from Z1 = X1 + iY1 and Z2 = X2 + iY2. From [Z1,Z2] = Z1

one can write the condition on the real symmetries for the system of ODEs (5) or

(1), viz.

[X1,X2]− [Y1,Y2] = X1,

[X1,Y2] + [Y1,X2] = Y1, (6)

and Z2 = α(x, u)Z1 where α = α1(x, f) + iα2(x, g) gives rise to the conditions

X2 = α1(x, f)X1 − α2(x, g)Y1,

Y2 = α1(x, f)Y1 + α2(x, g)X1. (7)

Now by the use of the invariants T = X and S = U ′/U of the complex symmetry

Z2, the r-CODE (4) is converted to the complex Bernoulli equation

dS

dT
= F (T )S − S2, (8)

which can be split into the system of two real ODEs

dS1

dT
= F (T )S1 − (S2

1 − S2
2),

dS2

dT
= F (T )S2 − 2S1S2, (9)

once we set S = S1+ iS2. The symmetry Z1 is lost as a point symmetry of equation

(8) and it becomes the nonlocal symmetry

Z1=− S exp(−
∫

SdT )
∂

∂S
, (10)

which is in fact complex and gives two real nonlocal symmetries for the system of

first-order ODEs (9). However, if we commence reduction of the second-order ODE
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(2) using the complex invariants t(x, u), s(x, u, u′) of Z2, the resulting first-order

r-CODE

ds

dt
= H(t, s),

has complex nonlocal symmetry

Z1 = exp(

∫
L(t, s)dt) (ζ(t)

∂

∂t
+ χ(t, s)

∂

∂s
), (11)

which has canonical form (10). The transformation that converts the form of the

complex nonlocal symmetry (11) to its canonical form (10) is given by T = r(t),

S = (α′/α)(t,s), r
′(t) ̸= 0. This also results in the transformation of the first-order

equation in t, s variables to its standard form (8). Here r(t) is an invariant of the

nonlocal operator of the form (11). If one performs the reduction of order by Z1,

Z2 becomes the local symmetry of the first-order ODE which allows for quadrature.

The foregoing discussions results in the following theorem which is a complex ex-

tension of the theorem in [13]. The ideas are similar except that we have complex

functions and operators as well as importantly decomposition in the real domain

which is applicable to systems of two second-order ODEs. Hence we have the fol-

lowing result for systems of two second-order ODEs.

Theorem. A system of two second-order ODEs of the form (1) which admits four

real Lie-like operators X1, Y1, X2 and Y2 with commutation relations, in suitable

basis, (6) subject to the relations (7) is reducible to quadratures.

The proof is evident from the previous discussions. For if the system (1) arises

from the second-order r-CODE of the form (2) which admits a two-dimensional

complex Lie algebra of point symmetries with [Z1,Z2] = Z1 in suitable basis and

Z2 = α(x, u)Z1 is integrable, then one sets Z1 = X1 + iY1 and Z2 = X2 + iY2. The

associated system is reducible to quadratures.

In the following we present examples which illustrate our nonlocal approach.

3. REDUCTIONS FOR SYSTEMS

We illustrate the nonlocal complex variables approach by investigating the fol-

lowing two examples: the first is of second-order and the second is a first-order

Riccati system.

Example 1. Consider the system of second-order ODEs

f ′′ + xf ′ − f = 0,

g′′ + xg′ − g = 0, (12)
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which admits the four real Lie-like operators

X1 = x
∂

∂f
, Y1 = x

∂

∂g
,

X2 = f
∂

∂f
+ g

∂

∂g
, Y2 = f

∂

∂g
− g

∂

∂f
. (13)

Also the conditions of the theorem of the previous section are satisfied. Thus one

can discuss the symmetry and reduction of the system (12) via that of the single

complex equation (set u = f + ig)

u′′ + xu′ − u = 0. (14)

This r-CODE admits two complex Lie point symmetries (as well as six more) (cf.

also [6])

Z1 = x
∂

∂u
, Z2 = u

∂

∂u
which satisfy [Z1,Z2] = Z1.

The use of the transformations (3) in the above r-CODE (14) gives rise to system

(12). Here we use nonlocal symmetries to integrate our system. The invocation of

the real invariants t = x and s1 = (ff ′+gg′)/f2+g2, s2 = (fg′−f ′g)/f2+g2 of X2

and Y2, in the above system (12) gives the system of first-order Riccati equations

ds1
dt

+ s21 − s22 + s1t− 1 = 0,

ds2
dt

+ 2s1s2 + s2t = 0, (15)

and evidently X1, Y1 are lost as point symmetries of the system (15) and become

nonlocal symmetries, viz.

X1 = exp(−
∫

s1dt)[{(1− ts1)(cos(

∫
s2dt)− s2t sin(

∫
s2dt)}

∂

∂s1

−{(1− s1t) sin(

∫
s2dt+ s2t cos(

∫
s2dt)}

∂

∂s2
],

Y1 = − exp(−
∫

s1dt)[{(1− ts1) cos(

∫
s2dt)− s2t sin(

∫
s2dt)}

∂

∂s2

+{(1− ts1)(sin(

∫
s2dt)

∂

∂s2
+ cos(

∫
s2dt)}

∂

∂s1
]. (16)

This shows that there are nonlocal real symmetries in the integration of the first-

order system (15). The transformations T = t, S1 = s1 − 1/t and S2 = s2, reduces

the above system of Riccati equations (15) to the system of first-order Bernoulli

equations

dS1

dT
+ (T +

2

T
)S1 = −(S2

1 − S2
2),

dS2

dT
+ (T +

2

T
)S2 = −2S1S2. (17)
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The system (17) is solvable. This is seen by setting S = S1+ iS2 which converts the

system to the first-order r-CODE

dS

dT
+ (T +

2

T
)S = −S2.

The complex solution of above equation yields two real solutions of system of first-

order ODEs (17). Ultimately, we arrive at the solution of the system of two coupled

equations (12).

Thus one can discuss the symmetry and reduction of the considered system via

that of a single equation in the complex domain. Here this is illustrated via nonlocal

symmetries.

Example 2. Consider the system of first-order Riccati ODEs

ds1
dt

= f1(t)(s
2
1 − s22) + g1(t)s1 + h(t),

ds2
dt

= 2f1(t)s1s2 + g1(t)s2. (18)

The functions f1, g1 and h are real functions (they can be considered as complex).

Here again we resort to the algebraic properties of the Riccati system (18) by means

of the first-order Riccati equation in the restricted complex domain

ds

dt
= f1(t)s

2 + g1(t)s+ h(t), (19)

where s is a complex function of t. This equation (19) can easily be transformed via

s = s1 + is2 to the Riccati system (18). It admits the complex nonlocal symmetry

(cf. [6])

Z1 = exp(

∫
f1(t)sdt)(sk(t) +

k′(t)

f1(t)
)
∂

∂s
, (20)

where u = k(x) is a solution of the second-order linear equation associated with (19)

via the transformation, t = x, s = −u′/uf1. The complex transformation S = s and

T = −f1(t)s− k′(t)/k(t) reduces (18) to the simpler system of first-order Bernoulli

equations

dS1

dT
= (g1(T ) +

f ′
1(T )

f1(T )
− 2

k′(T )

k(T )
)S1 − S2

1 + S2
2 ,

dS2

dT
= (g1(T ) +

f1
′(T )

f1(T )
− 2

k′(T )

k(T )
)S2 − 2S1S2,

which in fact comes from the complex first-order Bernoulli equation (set S = S1+iS2)

dS

dT
= (g1(T ) +

f ′
1(T )

f1(T )
− 2

k(T )′

k(T )
)S − S2. (21)
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It is of importance to stress here that one can use complex nonlocal symmetries to

reduce the order of a first and second-order r-CODE which in turn results in the

nontrivial reduction of the corresponding system of two real ODEs. It is due to the

fact that a complex variable encodes the information of two real variables. Equations

considered here are important as they provide us nice examples of systems of those

ODEs that can be handled by complex nonlocal symmetries. Hence the analytic

continuation of certain ODEs to the restricted complex domain yields nontrivial

results for the corresponding systems of ODEs. The above r-CODEs were previously

investigated in the real domain in [6]. Here we have extend them to systems by

complex splitting

4. NOETHERIAN INTEGRALS AND REDUCTIONS

First integrals can be determined for variational problems for systems of ODEs

by the Noether theorem (see, e.g. the books [2, 3, 4, 5] for more details on this the-

orem). If a local Noether symmetry (symmetry of the local Lagrangian) is known,

the explicit formula in Noether’s theorem yields a local conservation law. In the

study of conservation laws, one may encounter nonlocal Noether symmetries of a

nonlocal Lagrangian for the given equations. However, by the use of these nonlocal

Noether symmetries and nonlocal Lagrangians in Noether’s theorem, one can ob-

tain conservation laws of both local and nonlocal type [17]. A Noether symmetry

not only has physical relevance but also provides double reduction of order of the

given second-order r-CODE (cf. [19]). Correspondingly, the order of the resulting

systems of second-order ODEs obtained from the r-CODE can also be reduced. Con-

sequently, we can apply all these results equally well to nonlocal Noether symmetries

to obtain local as well as nonlocal Noetherian integrals for corresponding systems

of second-order ODEs.

In this section, we construct first integrals for systems of two second-order ODEs

by considering complex nonlocal Noether symmetries of the complex Euler-Lagrange

equations. We also invoke Lagrangians of local and nonlocal types. For these systems

of ODEs, integrals are obtained from the corresponding r-CODEs.

Some preliminaries are now in order. The authors [16] have stated the Euler-

Lagrange equations, the Noether-like operator conditions and expressions of first

integrals for systems of two ODEs that arise from r-CODEs. Here we merely state

the pertinent results and definitions from [16].

Suppose that L = L1 + iL2 is a complex Lagrangian of the r-CODE (2) relative

to the system (1). Therefore, it satisfies the complex Euler-Lagrange equation. The
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realification of the Euler-Lagrange equation yields

∂L1

∂f
+

∂L2

∂g
− d

dx
(
∂L1

∂f ′ +
∂L2

∂g′
) = 0,

∂L2

∂f
− ∂L1

∂g
− d

dx
(
∂L2

∂f ′ −
∂L1

∂g′
) = 0 (22)

for the system (1).

Definition. The operators X = ς1∂x +χ1∂f +χ2∂g and Y = ς2∂x +χ2∂f −χ1∂g

are said to be Noether-like operators, of the EL-system (1) which arises from the

r-CODE (2), with respect to the Lagrangians L1 and L2 if they satisfy

X(1)L1 −Y(1)L2 + (dxς1)L1 − (dxς2)L2 = dxA1, dx = d/dx

X(1)L2 +Y(1)L1 + (dxς1)L2 + (dxς2)L1 = dxA2, (23)

for suitable functions A1 and A2.

If we take

ς = ς1 + iς2, A = A1 + iA2, Z = X+ iY (24)

and further let χ = χ1+iχ2 and χ(1) = χ
(1)
1 +iχ

(1)
2 in the complex symmetry operator

Z(1) = ς
∂

∂x
+ χ

∂

∂u
+ χ(1) ∂

∂u′ ,

then X(1) and Y(1) are

2X(1) = 2ς1∂x + χ1∂f + χ2∂g + χ
(1)
1 ∂f ′ + χ

(1)
2 ∂g′ ,

2Y(1) = 2ς2∂x + χ2∂f − χ1∂g + χ
(1)
2 ∂f ′ − χ

(1)
1 ∂g′ . (25)

These are the first prolongations of the Noether-like operators X and Y.

Noether-like Theorem. X and Y are two Noether-like operators of system

(1) with respect to the Lagrangians L1 and L2, then (1) admits two first integrals

I1 = ς1L1−ς2L2+∂f ′L1(χ1−f ′ς1−g′ς2)− ∂f ′L2(χ2−f ′ς2−g′ς1)− A1,

I2 = ς1L2+ς2L1+∂f ′L2(χ1−f ′ς1−g′ς2) + ∂f ′L1(χ2−f ′ς2−g′ς1)− A2. (26)

These formulae for first integrals are different from the usual Noether first integrals

for systems. We now discuss few examples which illustrate our approach. Some of

these r-CODEs have been studied in the real domain [17].

Example 1. We investigate the free particle equations

f ′′ = 0,

g′′ = 0. (27)
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from an unusual viewpoint, viz. nonlocal as well as having non-standard La-

grangians. This system corresponds to the restricted complexified free particle equa-

tion

u′′ = 0. (28)

The standard complex Lagrangian admitted by (28) is

L =
u′2

2
. (29)

The real Lagrangians admitted by the above system (27) of free particle equations

are as a consequence of (29) (note although derived from a standard Lagrangian,

these are not the standard Lagrangians of the free particle system)

L1 =
1

2
(f ′2 − g′2),

L2 = f ′g′. (30)

The Lagrangian (29) has many complex nonlocal Noether symmetries [17]. One of

these nonlocal symmetries is [17]

Z =

∫
udx∂/∂x+

1

2
u2∂/∂u. (31)

By complex splitting this gives us the following two real nonlocal Noether-like op-

erators

X1 =

∫
fdx

∂

∂x
+

1

2
[(f 2 − g2)

∂

∂f
+ 2fg

∂

∂g
],

Y1 =

∫
gdx

∂

∂x
+

1

2
[2fg

∂

∂f
− (f 2 − g2)

∂

∂g
], (32)

for the system of free particle equations (27). As both the Lagrangian and Noether

symmetry are known, we require a first integral of the free particle equation (28).

Application of Noether’s theorem to (31) results in the first integral (see [17])

I =
1

2
u′2

∫
udx− 1

4
u2u′, (33)

for the equation (28) corresponding to the complex nonlocal Noether symmetry (31).

This first integral is complex and yields two real nonlocal first integrals

I1 =
1

2
[(f ′2 − g′2)

∫
fdx− 2f ′g′

∫
gdx]− 1

4
[f ′(f 2 − g2)− 2fgg′],

I2 =
1

2
[(f ′2 − g′2)

∫
gdx+ 2f ′g′

∫
fdx]− 1

4
[g′(f 2 − g2) + 2f ′fg], (34)
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for the above system of free particle equations (27) corresponding to the nonlocal

Noether-like operators X1 and Y1. These two operators satisfy the Noether-like

condition of the Definition. Alternatively one can determine the first integrals (34)

from the Noether-like theorem.

Example 2. The general linear second order ODE in the restricted complex

domain is

u′′ + a(x)u′ + b(x)u = 0. (35)

After use of an appropriate transformation, the above r-CODE (35) can be reduced

to the free particle equation U ′′ = 0. By performing the same analysis as for the

free particle equations we can obtain the complex nonlocal symmetries as well as

the complex nonlocal first integrals for the general linear r-CODE (35). Hence it

enables us to analyze the nonlocal properties of the system of two second-order ODEs

corresponding to the general r-CODE (35). For example one can deduce intriguing

nonlocal Noether-like operators and nonlocal first integrals for the two-dimensional

harmonic oscillator system.

Similarly the complex nonlocal Noether symmetries and corresponding complex

first integrals for nonlinear r-CODEs which are linearizable by some point transfor-

mation can also be derived. For instance, consider the familiar nonlinear r-CODE

u′′ + 3uu′ + u3 = 0. (36)

Utilizing the change of variables X = x− 1/u, U = x2/2− x/u (see e.g. [20] ), the

above r-CODE (36) can be reduced to the free-particle equation d2U/dX2 = 0. For

the latter equation our procedure can be used to obtain nonlocal properties for the

system of two ODEs which corresponds to (36).

Example 3. Consider the analytic continuation of the nonlinear ODE [17, 21]

to the restricted complex domain

u′′ =
u′2

u
+ a(x)uu′ + a′(x)u2. (37)

The complex nonlocal Lagrangian associated with the above r-CODE (37) is given

by [17],

L =
1

2
(
u′

u
− au)2 exp(−

∫
audx). (38)

The complex nonlocal Noether symmetry corresponding to the above complex non-

local Lagrangian is [17],

Z = u exp(

∫
a(x)udx)

∂

∂u
. (39)
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Since Z is a complex nonlocal Noether symmetry for the nonlocal Lagrangian, we

may construct a first integral for the r-CODE (37). This example illustrates that not

only Lie point symmetries are necessarily useful in order to reduce a given equation

to quadrature but nonlocal symmetries can also do this very elegantly. Further

double reduction in the order of the corresponding system of ODEs is carried out

easily. The complex variables approach helps us to write the following system of

ODEs corresponding to (37) as

ff ′′ − gg′′ = f ′2 − g′2 + a(x){(f 2 − g2)f ′ − 2fgg′}+ a′(x)(f 3 − 3fg2),

f ′′g + fg′′ = 2f ′g′ + a(x){2ff ′g + (f2 − g2)g′}+ a′(x)(3f 2g − g3). (40)

The two real nonlocal Lagrangians associated with the above system of ODEs (40)

are

L1 =
1

2
exp(−a

∫
fdx)[cos

∫
agdx(

{(f ′2 − g′2)(f 2 − g2) + 4ff ′gg′}
(f2 + g2)2

+a2(f2 − g2)− 2af ′) + 2 sin

∫
agdx(

{(f2 − g2)f ′g′ − (f ′2 − g′2)fg}
(f2 + g2)2

+a2fg − ag′)],

L2 =
1

2
exp(−a

∫
fdx)[2 cos a

∫
gdx(

{(f2 − g2)f ′g′ − (f ′2 − g′2)fg}
(f2 + g2)2

+a2fg − ag′)− (sin

∫
agdx

{(f ′2 − g′2)(f 2 − g2) + 4f ′gg′}
(f 2 + g2)2

+a2(f2 − g2)− 2af ′)]. (41)

The nonlocal Noether symmetry (39) is complex and it gives rise to two real nonlocal

Noether-like operators

X1 = exp(

∫
afdx)[{f cos(

∫
agdx)− g sin(

∫
agdx)} ∂

∂f

+{g cos(
∫

agdx+ f sin

∫
agdx} ∂

∂g
]

Y1 = exp(a

∫
fdx)[{g cos(

∫
agdx+ f sin

∫
agdx} ∂

∂f

−{f cos(

∫
agdx)− g sin(

∫
agdx)} ∂

∂g
]. (42)

with respect to the real Lagrangians (41). Once the Noether symmetry (39) is

known, our next step is to write the first integral of equation (37). Hence the

application of Noether’s theorem to (38) results in the local first integral

I =
u′

u
− au, (43)
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which corresponds to the nonlocal Noether symmetry (39). This first integral (43)

splits into two real first integrals

I1 =
ff ′ + gg′

f2 + g2
− af,

I2 =
fg′ − f ′g

f2 + g2
− ag, (44)

for the system of ODEs (40) associated with the nonlocal Noether-like operators

(42). Note that these satisfy the Noether-like theorem. Alternatively one can ob-

tain these from from the Noether-like theorem with respect to the Lagrangians L1

and L2 given in (42). As I satisfies Z[1]I = 0, we have

u′ − au2 − ku = 0, k is some constant. (45)

The above r-CODE (45) is a Bernoulli equation and it yields a Bernoulli system in

two dimensions

f ′ − a(f 2 − g2)− kf = 0,

g′ − 2afg − kg = 0. (46)

Note that we can compare (45) with the general form of the Riccati equation of

the previous section if we set f1 = a, g1 = k and h = 0. The r-CODE (45) is

solvable by quadrature and consequently the system of second-order ODEs (46)

can also be reduced to quadratures via nonlocal symmetries. Hence, a complex

exponential nonlocal operator is useful in converting the given system of ODEs (46)

to quadratures.

5. CONCLUSION AND DISCUSSIONS

The main purpose of this paper was to exhibit how a complex nonlocal symmetry

approach that works for r-CODEs can be implemented to reduce the order of the

corresponding systems of ODEs to quadratures. There is extensive literature on the

use of Lie point symmetries [2, 3, 4, 5] whereas the same is not the case for nonlocal

symmetries although progress has been made [6, 7, 8, 9, 10, 11, 12, 13, 17, 22].

We have examined a second-order r-CODE admitting a two-dimensional connected

complex algebra and reduced the equation via one symmetry - the wrong one. The

other symmetry is lost as a Lie point symmetry and becomes a complex nonlocal

symmetry of the reduced equation and with the help of real transformations, we have

obtained the corresponding reduced system of first-order ODEs which are solvable

by quadratures. We also showed that the use of exponential complex nonlocal

symmetry facilitates the reduction of the given system to quadratures.
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We also studied the use of nonlocal Noether symmetry. A complex nonlocal

Noether symmetry of a complex local or nonlocal Lagrangian can be used to obtain

two first integrals for the corresponding system of two second-order ODEs. In some

cases, the corresponding system of ODEs can also be converted to quadratures as

we have seen. However, the picture can be quite different in other cases where

use of a complex nonlocal Noether symmetry to construct first integrals for the

corresponding system of ODEs enables one reduction. Though all the first integrals

in these cases satisfy the requirement of first integrals, occurrence of nonlocal terms

in the integrals does create difficulties in the utility of these integrals for further

reduction.

In the last part we discussed an example of a nonlinear ODE admitting a complex

nonlocal Noether symmetry which yields a complex first integral in the form of a

first-order Bernoulli equation. This Bernoulli equation has an exponential nonlocal

symmetry. The use of the invariants of this complex symmetry not only reduces

the first-order Bernoulli equation but also the resulting system of two first-order

Bernoulli equations to quadratures. Ultimately, we arrive at the double reduction of

that system of second-order ODEs which arises due to our nonlocal complex variable

approach.
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