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Abstract -  The propagation of a strong magneto-gas dynamic, rotating and gravitating   

shock wave originating  in a stellar interior is considered , when it approaches the 

surface of the star . The flow behind the shock wave is assumed to be spatially 

isothermal rather than adiabatic to simulate the conditions of large radiative transfer 

near the stellar surface. It has been observed that gravitation and rotation have important 

impact upon the emergence of shock at the surface of the star. 
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1.     INTRODUCTION  

 

            In the present paper, we discuss the propagation of a strong magneto-gas 

dynamic shock wave as it approaches the surface of a star. Such shocks are formed in 

the interior of stars due to the steepening of internal disturbances and then propagate 

outward to the periphery of the star .We consider the stage when the shock is so close to 

the surface of the star that we can treat the motion as spherical. Differing from 

Srivastava [1], Sachdev and Ashraf [2] , we take into consideration the gravitational 

effect . We consider that the initial conditions of the solution have been “forgotten”. In 

fact , we are referring to self-similar solution of the second kind as considered by 

Zel’dovich and Raizer([3], p.812-817) while discussing the emergence of a strong shock 

near the edge of a star. Further we also consider a rotating stellar atmosphere .Recently, 

it has been observed that the outer atmosphere of the planets rotates due to the rotation 

of the planets .Macroscopic motion with supersonic speed occurs in the interplanetary 

atmosphere with rotation and shock waves are generated (Jana and Ganguly[4]). 

            As the shock propagates in the outer layers of the star, it accelerates and the 

temperature behind it increases. Besides, the mean free path of radiation which is 

inversely proportional to density becomes extremely large so that there is intense 

radiative transfer leading to the leveling down of the temperature gradient .Thus, the 

flow behind the shock is rendered approximately isothermal. This picture is different 

from the one normally envisaged by Rogers [5] where the shock front is assumed 

isothermal .We have closely followed Zel’dovich and Raizer[3] adopting Eulerian 

coordinates rather than the Lagrangian coordinates , employed by Laumbach and 

Probstein[6] .  

            The shock position is assumed to be given by the similarity relation 

( )α−= tAX   where X is the shock distance measured from the surface of a star and t is 

the time which is negative before the shock reaches the surface of the star .We take t = 0 
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to be the instant at which the shock wave emerges at the surface.  A  and α (<1) are 

constants. 

            The variations of flow variables have been depicted graphically and the relevant 

comparison between the cases of presence and absence of gravitation have been shown. 

 

2.     EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 

 

            We take the origin of co-ordinates on the surface of the star and the positive x 

axis points into the interior of the star. We assume that the undisturbed density ahead of 

the shock is given by  

(1)                                                               0)(-3   ,     br                             0 ≤δ≤=ρ δ

      where b and δ are  constants  so that 00 =ρ  on the surface .  

The magnetic field is taken after slight modification of Rosenau and Frankenthal [7], 

        

( ) (2)                                                             01     X hh                             c0 <µ<−= µ

      directed tangentially to the advancing shock front  and ch   is a constant . 

The basic equations governing the isothermal flow in spherically symmetric  

Eulerian form are : ( Shrivastava[1]  , Jana and Ganguly[4] ) 
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where  u , p , ρ , T , h ,G , m , v , r , t are radial component of  velocity , pressure , 

density,  temperature , magnetic field , gravitational constant , the mass contained 

between a fixed surface and the surface under consideration  , azimuthal component of  

velocity , radial distance  ,  time respectively  behind the shock wave . 
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From equations (4), (8) and the gas law T  Rp ρ=   we get  
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            We assume that the heat flux across the optically thin shock front is continuous 

so that the classical shock conditions hold . So for a strong shock we have the boundary 

conditions  at the shock as(see, Zel’dovich and Raizer([3], p.814), Nath et.al.[8])  
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where  
( )
( )1

1

+γ
−γ

=β  is the density ratio across the shock and X&  is the shock velocity.  

3.   SIMILARITY SOLUTIONS 

We introduce a similarity variable 
X

r
=ξ   and seek a solution of the form 
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At the shock , where 1=ξ , the boundary conditions (10) for the reduced functions  
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      Under the equilibrium conditions, we have from (4) 
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Equation (8) provides the following integral in terms of the reduced functions: 

( ) ( ) (18)                                                                             Pg                           ξ=ξ
 

Substituting equations (11)-(16) into equations (3) and (9) and making use of equations 

(4)-(7) we obtain  
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Noting the fact that motion is self-similar , we have from (23) 
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From equations (19) , (21) and (22)  we obtain 
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ξ  varies from 1 at the shock to ∞  at a large distance behind the shock . To reduce the  

range of  integration we change the variable ξ  to η  by the transformation 

(30)   ,   
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ξ
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So that η  varies from 1 at the shock  to 0 far behind the shock . 

Making use of the transformation (30), we obtain  
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4.     RESULTS AND DISCUSSIONS 
            The set of differential equations (31)- (35)  have been integrated numerically 

with the help of  the boundary conditions (17) by the well known Runga-Kutta  method. 

The variations of the flow variables with the distance are illustrated in the figures (1) – 

(5) for   γ =1. 66,   M
2 

= 5 and   MA
2 

=10,  α= 0. 8, b = 2, 5.2−=δ  and the respective 

influences of gravitation, magnetic field and rotation have been studied by their 

presence and absence. 

The line patterns used in the figures (1) –(5) stand for the following cases: 

     Case I :   All present         

          Case II:  gravitation absent 

 

    Case III: magnetic field absent 

 

          Case IV:  rotation absent 

 

and we have considered the effects of these factors like rotation ,gravitation , magnetic  

field and also the role of  γ in the variations of flow parameters. 

 

Fig. 1 - Variation of Radial Velocity with Distance
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            As we move towards the centre of shock , in the case I , there is a remarkable 

variation in radial velocity .  As we go towards the centre of shock , it first decreases 

and then increases abnormally .So also in the absence of magnetic field ,the radial 
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velocity tries to increase but after some time drops down towards zero much before we 

reach the centre of the shock.  

            In the absence of gravitation, radial velocity behaves like a sinusoidal wave and 

tries to arrive at zero before we reach the centre of the shock. When the rotation is 

absent radial velocity, like in the case when the magnetic field is absent, tries to increase 

and then gradually tries to attain some constant value as we approach towards the centre 

of the shock. 

             In fact, presence of rotational effect helps gravitational and magnetic presence 

to take the radial velocity to upper bound as we approach the centre of the shock .Thus 

we conclude the gravitational presence creates a conducive condition for rotational 

velocity to increase radial velocity as we approach towards the centre of the shock. 

            In Fig. 2 , we observe that , in absence of gravitational field , variation of 

rotational velocity is similar to that of  radial velocity with distance as we move towards 

the centre of the shock . This shows presence of magnetic field dampens rotational 

velocity as well as radial velocity to decrease as we go towards the centre of the shock, 

which is why we notice in Fig.2 that in the absence of magnetic field gravitational 

presence tries to take rotational velocity to higher values as we move towards the centre 

of the shock. This was noticeable evidently in Fig.1 when magnetic field was absent. 

Thus we find in Fig.2 gravitational presence here also has as an important role in the 

increase of radial velocity as we move towards the centre of the shock. 

 

                                  In Fig. 3, we observe that absence of gravitational field puts a 

dampening effect on the variation of density and pressure as we move towards the 

centre of the shock. In fact it decreases and almost attains zero value before we reach at 

the centre of the shock. Even in case I, density and pressure tend to zero as we move 

towards the centre of  the shock. 

Thus we conclude, in spite of presence of rotation, the role of magnetic field is 

significant in reduction of density and pressure of the shock wave as we move towards 

the centre of the shock. 

Fig.2 - Variation of Rotational Velocity with Distance 
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            Fig. 4 shows the presence of magnetic field tries to reduce intensity of shock, as  
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its presence leads to immediate decrease as we move towards the centre of the shock. 

            Lastly, Fig.5 also justifies that absence of magnetic field gives a leap to mass as  

we go towards the centre of the shock. 

 

Fig. 3 - variation of Density and  Pressure with Distance 
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            We finally conclude that magnetic field has a disaster effect.  Srivastava[1] 

discussed the problem of the emergence of a spherical magneto gas dynamic shock 

wave at the surface of a star with the help of  Mc Vittie[9] solution technique . He 

concluded that radial velocity , density , pressure and magnetic field increase as one 

moves towards the nucleus of the star . But in our case the presence of magnetic field 

and the absence of gravitation leads to sharp declined in radial velocity, rotational 

velocity, density and pressure, and magnetic field. In fact, presence of gravitation only 

helps along with rotational factor to keep the values of velocity, density , pressure to 

have nonzero positive values as one moves  towards the centre of the shock or nucleus 

of star . 

            So our conclusion is that gravitation and rotation have important impact upon 

the  

emergence of shock at the surface of the star.  

 

             In the Table 1-Table 5, when the variables are absent as we approach zero, 

values become very high for comparative study of presence and absence. It is therefore 

not possible to display it in the same figure. Otherwise graphs for variations can not be 

displayed properly .There will be overlapping of the graphs. 

              It should be noted that due to the possibility of overlapping of the graphs for 

the values of distance going towards the centre of the shock (which are coming very 

high),we are presenting the tabulated values in appendix 1 for the interest of the readers. 
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Fig. 4 - Variation o f Magnetic Field with Distance 
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 Fig. 5 - Variation of Mass with Distance
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Appendix 1 
Table 1-Variation of Radial velocity with                Table 2-Variation of Rotational velocity with          
 Distance.                                                                      Distance. 

X All 
Present 

Gravitation 
absent 

Magnetic 
Field 

absent 

Rotation 
absent 

1 1 1 1 0 

0.8 1.989 -2.583 1.146 0 

0.6 1.683 -2.479 1.793 0 

0.4 1.638 -2.319 1.846 0 

0.2 1.483 -2.425 2.791 0 

0 0.918 - - - 

 
Table 3-  Variation of Density and Pressure with Table 4- Variation of Magnetic Field with            

Distance.                                                                        Distance  
X All 

Present 

Gravitation 

absent 

Magnetic 

Field 
absent 

Rotation 

absent 

1 1 1 1 1 

0.8 -2.116 -7.33 -4.778 2.755 

0.6 1.056 -4.526 -12.896 110.128 

0.4 0.343 -1.056 -889.627 128864.47 

0.2 0.089 -0.286 -1774.839 36075880 

0 0.035 - - - 

 
X All 

Present 
Gravitati
on absent 

Magnetic 
Field 

absent 

Rotation 
absent 

1 1 1 0 1 

0.8 0.647 -2.41 0 1.461 

0.6 0.001 -6.386 0 -26.658 

0.4 0.002 -9.958 0 5768.997 

0.2 0.005 -15.466 0 795336.38 

0 0.045 - - - 

 

Table 5- Variation of Mass with Distance. 

X All Present Gravitation absent Magnetic Field 

absent 

Rotation absent 

1 1 0 1 1 

0.8 1.384 0 1.402 0.396 

0.6 2.173 0 31.697 -13.787 

0.4 0.419 0 40.504 3476.713 

0.2 -1.636 0 12674.19 -11296578 

0 -3.941 - - - 
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