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Abstract- This paper presents a simple algebraic approach for deriving the optimal lot 
size for economic production quantity (EPQ) model with rework process. Conventional 
methods for solving lot size problems are by using differential calculus on the long-run 
average production-inventory cost function with the need to prove optimality first. A 
few recent articles proposed the algebraic approach to the solution of classic economic 
order quantity (EOQ) and EPQ model without reference to the use of derivatives. This 
paper extends it to an EPQ model with reworking of defective items. We demonstrate 
that optimal lot size and optimal production-inventory cost for such an imperfect EPQ 
model can be derived without derivatives. As a result, it may enable the practitioners or 
students who with little knowledge of calculus to understand or handle with ease the 
realistic production systems. 

 

Keywords- Operations management; Inventory control; Manufacturing; Lot sizing; 
EPQ 
 

1. INTRODUCTION 

 
 The mathematical modeling and analysis was employed by the EOQ model 
several decades ago [1] to balance the setup and holding costs and to derive the optimal 
order quantity that minimizes overall inventory costs. A considerable amount of 
research has since been carried out to enhance the classical EOQ model by relaxing its 
unrealistic assumptions [2-4]. In the manufacturing sector, the economic production 
quantity (EPQ) model (also known as economic manufacturing quantity (EMQ) model) 
is often adopted to determine the optimal production lot size for items that are produced 
internally instead of being obtained from an outside supplier. The classical EPQ model 
assumes that production process functions perfectly at all times. However, in real-life 
situations generation of imperfect quality items during a production run is inevitable. 
Sometimes, these defective items can be reworked and repaired; therefore the overall 
production- inventory costs can be reduced significantly. For examples, the printed 
circuit board assembly (PCBA) in PCBA manufacturing, plastic goods in the plastic 
injection molding process, and production process in other industries, such as metal 
components, textiles, etc., sometimes employ rework as an acceptable process in terms 
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of level of quality. Many studies were carried out to address imperfect quality issue of 
production systems [5-14]. Effect of random defective rate and the reworking of 
defective items on EPQ model were studied by Chiu and Chiu [15] using conventional 
methodology. They employed the differential calculus on the long-run average 
production-inventory cost function with the need to prove optimality first. A few recent 
articles for example, Grubbström AND Erdem [16] and Cárdenas-Barrón [17] presented 
algebraic approaches for solving classic EOQ and EPQ model without reference to the 
use of derivatives (neither applying the first-order nor second-order differentiations). 
This paper extends it to a prior research [15] which takes the reworking of random 
defective items into consideration. 
 

2. THE BASIC MODEL 

 
 Assuming an imperfect production process [15] may randomly generate x 
percent of defective items at a production rate d and all of the defective items produced 
are assumed to be repairable through a rework process. The production rate P is a 
constant, and is much larger than the demand rate λ. The production rate d of the 
imperfect quality items can be expressed as the product of the production rate P times 
the percentage of defective items produced x. Therefore, d can be written as d=Px. The 
inspection cost per item is included in unit production cost C. Both repairing cost CR 
and holding cost h1 per reworked item are also included in the proposed cost analysis. 
Additional notation used is given in the section of Nomenclature. 
 Because the proposed EMQ model assumes that no shortages are permitted, this 
implies the production rate must always greater than or equal to the sum of the demand 

rate and the rate at which defective items are produced. Hence, we must have P-d-λ≧ 0. 

The following derivations are similar to that were given by [8,15]. The expressions of 
production uptime t1; the time t2 needed to rework defective items; production downtime 
t3; on-hand inventory level H1 and H, and cycle length T are as follows (see Figure 1). 
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 Solving the inventory cost per cycle [15], TC(Q) is 
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Figure 1:  On-hand inventory of perfect quality items [15] 

 

 In this study, the proportion of defective items produced is considered to be a 
random variable with a known probability density function. Although the randomness 
of defective rate will not affect the production cycle length, it will change the total 
repairing time and amount of extra costs required for the rework process in each 
production cycle. Thus, one must take the randomness of defective rate into account and 
utilize the expectation values of x in the inventory cost analysis. Hence, the long-run 
expected values of production-inventory cost E[TCU(Q)]=E[TC(Q)/T] can be derived 
below [15]: 
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3. OPTIMAL LOT SIZE DERIVED WITHOUT DERIVATIVES 

 
 Instead of using conventional differential calculus on the long-run cost function 
E[TCU(Q)], this study employs algebraic approach to the solution of lot size problem of 
such an imperfect quality EMQ model. From Equation (8), one has the following: 
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 From Equation (11), if the following term is zero, then E[TCU(Q)] can be 
minimized: 
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Equation (13) yields the same result as what was derived by using the 

differential calculus [15] (see Appendix). Further, suppose the manufacturing process 
produces no defective items, then x=0, one confirms that Equation (13) becomes the 
same equation as that given by classic EPQ model [3]: 
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The optimal production-inventory cost E[TCU(Q*)] can be obtained by 

substituting Q* into Equation (11): 
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3.1. Discussion 

 Conventional methods for solving lot size problems are by using differential 
calculus on the long-run average production-inventory cost function with the need to 
prove optimality first (see for example [8] and Appendix [15]). This paper demonstrates 
that the optimal lot size and the optimal production-inventory cost (i.e. Eqs. (13 and 
(15)) can be derived effortlessly. 
 

4. CONCLUSIONS 

 
 This paper presents a simple algebraic approach to replace the conventional use 
of differential calculus for determining the optimal lot size for an imperfect EPQ model 
with rework process. The proposed method uses algebraic derivation, through forming a 
square term in the long-run average cost function, then setting it to zero in order to 
minimize this cost function. As a result, this paper demonstrates that the optimal lot size 
and the optimal production-inventory cost for such an imperfect EPQ model can be 
derived without derivatives. With this simplified approach, the practitioners or students 
who with little or no knowledge of calculus should be able to understand or handle with 
ease the realistic production systems. 
 
Acknowledgements-Authors would like to express their appreciation to the National 
Science Council (NSC) of Taiwan for supporting this research under Grant# NSC 97-
2410-H-324-013-MY2. 
 

5. APPENDIX 

 

 Differentiation of E[TCU(Q)]: The first and the second derivatives of E[TCU(Q)] 
(Equation (8)) are as follows: 
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 Since the second derivative of E[TCU(Q)] is greater than zero, it is convex. One 
can derive the optimal production quantity Q* by setting the first derivative of 
E[TCU(Q)] equal to zero and obtains the following [15]: 
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6. NOMENCLATURE 

 

 λ = annual demand rate (items/year), 
 P = annual production rate (items/year), 
 d = production rate of imperfect quality items, 
 h1 = holding cost per reworked item ($/item/unit time), 
 P1 = rate of reworking of defective items (units per unit time); note that P1 

does not have to be greater than λ, 
 H1 = the maximum level of on-hand inventory in units, when the regular 

production process stops,   
 H = the maximum level of on-hand inventory in units, when the rework 

process ends,  
 x = the proportion of defective items produced, a random variable with 

known probability density function,  
 K = setup cost for each production run, 
 h = holding cost ($/item/unit time), 
 Q = production lot size for each cycle,  
 TC(Q)   = the total inventory costs per cycle, 
 TCU(Q)  = the total inventory costs per unit time. 

 

7. REFERENCES 

 
1. F. W. Harris, How many parts to make at once, Factory, The Magazine of 

Management, 10, 135-136, 1913. 
2. F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, 7th Ed., 

McGraw Hill, New York, 2001. 
3. S. Nahmias, Production and Operations Analysis, 5th Ed., McGraw Hill, New 

York, 2005. 
4. E. A. Silver, D. F. Pyke, and R. Peterson, Inventory Management and Production 

Planning and Scheduling, John Wiley & Sons, New York, 1998. 
5. M. J. Rosenblatt and H. L. Lee, Economic production cycles with imperfect 

production processes, IIE Transaction, 18, 48-55, 1986. 
6. X. Zhang and Y. Gerchak, Joint lot sizing and inspection policy in and EOQ model 

with random yield, IIE Transaction, 22, 41-47, 1990. 
7. Y-S. P. Chiu, S. W. Chiu, and H-D. Lin, Solving an EPQ model with rework and 

service level constraint, Mathematical & Computational Applications, 11, 75-84, 
2006. 

8. P. A. Hayek and M. K. Salameh, Production lot sizing with the reworking of 
imperfect quality items produced, Production Planning and Control, 12, 584-590, 
2001. 

9. S. W. Chiu, K-K. Chen, and H-H. Chang, Mathematical method for expediting 
scrap-or-rework decision making in EPQ model with failure in repair”, 
Mathematical and Computational Applications, 13, 137-145, 2008. 

10. A. M. M. Jamal, B. R. Sarker, and S. Mondal, Optimal manufacturing batch size 
with rework process at a single- stage production system, Computers and Industrial 

Engineering, 47, 77-89, 2004. 



 

 

An Algebraic Approach for Determining the Optimal Lot Size  370 

11. Y-S. P. Chiu, C-Y. Tseng, W-C. Liu, and C-K. Ting, Economic manufacturing 
quantity model with imperfect rework and random breakdown under abort/resume 
policy, P I Mech Eng B- Journal of Engineering Manufacture, 223, 183-194, 2009. 

12.  Y-S. P. Chiu and C-K. Ting, A note on ‘Determining the optimal run time for EPQ 
model with scrap, rework, and stochastic breakdowns’, European Journal of 

Operational Research, 201, 641-643, 2010. 
13. T. C. E. Cheng, An economic order quantity model with demand-dependent unit 

production cost and imperfect production processes, IIE Transaction, 23, 23-28, 
1991. 

14. Y-S. P. Chiu, S. W. Chiu, C-Y. Li, and C-K. Ting, Incorporating multi-delivery 
policy and quality assurance into economic production lot size problem, Journal of 

Scientific & Industrial Research, 68, 505-512, 2009. 
15. Y-S. P. Chiu and S. W. Chiu, The finite production model with the reworking of 

defective items. International Journal of Industrial Engineering, 12, 15-20, 2005. 
16. R. W. Grubbström and A. Erdem, The EOQ with backlogging derived without 

derivatives, International Journal of Production Economics, 59, 529-530, 1999. 
17. L. E. Cárdenas-Barrón, The economic production quantity (EPQ) with shortage 

derived algebraically, International Journal of Production Economics, 70, 289-292, 
2001. 


