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Abstract- Systems of Lane-Emden equations arise in the modelling of several physical 

phenomena, such as pattern formation, population evolution and chemical reactions. In 

this paper we construct Noether and partial Noether operators corresponding to a 

Lagrangian and a partial Lagrangian for a coupled Lane-Emden system. Then the first 

integrals with respect to Noether and partial Noether operators are obtained for the 

Lane-Emden system under consideration.  We show that the first integrals for both the 

Noether and partial Noether operators are the same. However, the gauge function is 

different in certain cases. 
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1. INTRODUCTION 

 

The generalized Lane-Emden equation 
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where n is a real constant and  )y(φ   is a real-valued continuous function of the variable 

y, is many problems arising in mathematical physics and astrophysics.  For certain fixed 

values of n and )y(φ , Eq. (1) has been used to model several phenomena such as the 

theory of stellar structure, the thermal behaviour of a spherical cloud of gas, isothermal 

gaseous sphere and   the theory of thermionic currents [1-3]. 

Various methods (for example numerical, perturbation, Adomian's 

decomposition, homotopy analysis, power series, differential transformation, and 

variational approach) for the solution to the generalized Lane-Emden equation (1) have 

been widely studied in the literature. See for example [4-7] and the references therein. 

Noether's theorem [8] reveals the general connection between symmetries and 

conservation laws. In fact, it provides the formula for construction of the conserved 

quantities (first integrals) for Euler-Lagrange differential equations once their 

symmetries are known. First integrals are of interest because they tell us something 

physically about the system [9] and also they reduce the order of the differential 

equations. 

In [10] the authors studied the Noether symmetries of Eq. (1) and obtained exact 

solutions for various cases which admitted Noether point symmetries.  Some other 

works on symmetries and solutions of Lane-Emden-type equations can be found in [11-
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17]. For the applications of Lie group methods to differential equations the interested 

reader is referred to [18-21]. 

Systems of Lane-Emden equations arise in the modelling of several physical 

phenomena, such as:  pattern formation; population evolution; chemical reactions; and 

so on (see for example [22]) and have attracted much attention in recent years. Several 

authors have established existence and uniqueness results for the Lane-Emden systems 

[23, 24] and other related systems (see e.g., [25-27] and references therein). 

The purpose of this study is to investigate the Noether and partial Noether 

operators and construct first integrals for the coupled Lane-Emden system 
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where n, p and q are real constants, which is a natural extension of the celebrated Lane-

Emden equation. 

The paper is structured as follows. In Section 2 we briefly recall the 

preliminaries of the Noether and partial Noether symmetry approach. We obtain all 

Noether operators and the corresponding first integrals for the system (2) in Section 3. 

Then in Section 4 we determine all partial Noether operators and the associated first 

integrals for the same system and comparison is made with the Noether case.  

Concluding remarks are mentioned in Section 5. 

 

2. PRELIMINARIES ON NOETHER, PARTIAL NOETHER OPERATORS AND 

FIRST INTEGRAL 

  

 In this section we present some definitions, which we utilize in Section 3. For 

details the reader is referred to [28-32]. 

Consider the vector field 
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where τ& , ξ&  andη& denote total time derivatives of τ, ξ and η  respectively. 

Let us consider the   second-order system of differential equations 

 

),u,v,u,t(E),,u,v,u,t(Eu 21 ν=νν= &&&&&&&&                                                                              (5) 

 

which has a Lagrangian ),u,,u,t(L νν && , i.e., Eqs. (5) are equivalent to the 

Euler-Lagrange equations [32] 
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Definition 1 
The vector field X of the form (5) is called a Noether point symmetry generator 

corresponding to a Lagrangian ),u,,u,t(L νν &&  of Eqs. (6)  if there exists a gauge function 

),u,t(B ν such that 
[ ] )B(DL)(D)L(X 1 =τ+ .                                                                                                 (7) 

Here D is the total differentiation operator defined by [28]  
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Definition 2 
The generator X as in (3) is called a partial Noether operator corresponding to a partial 

Lagrangian ),u,,u,t(L νν &&  [29] of Eqs. (5) if there exists a gauge function ),u,t(B ν  such 

that 
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The following theorems are taken from [8] and [29] respectively. 

Theorem 1 (Noether [8])  

If X as given in (3) is a Noether point symmetry generator corresponding to a 

Lagrangian ),u,,u,t(L νν &&  of Eqs. (5), then 

B
L

)(
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is a Noether first integral of Eqs. (5) associated with the operator X. 

Proof. See, e.g., [18, 31].  

Theorem 2 (Partial Noether [29])  

If X is a partial Noether operator corresponding to a partial Lagrangian ),u,,u,t(L νν &&  

then I in (10) is a first integral of (5) associated with X. 

Proof. See [29]. 

 

3. NOETHER POINT SYMMETRIES OF SYSTEM  (2) 

 

Consider the Lane-Emden system (2), viz., 
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It can be verified that the natural Lagrangian of this system is  
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The insertion of L from (11) into Eq. (7) and separation with respect to powers of u&  and 

ν&  yields linear overdetermined system of eight PDEs. These are 

0u =τ                                                                                                                          (12)      

 0=τν                                                                                                                         (13) 
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After some straightforward, albeit tedious and lengthy calculations, the above system 

gives 
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 Thus we obtain a single Noether point symmetry 
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for the system (2) with condition  (24). Using Theorem 1, due to Noether, we obtain the 

first integral 
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 We now consider the case when 1p −=  and 1q −= . In this case the Lane-Emden 

system (2) becomes 
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which has a standard Lagrangian 

 

.lntulntutL nnn ν−−ν= &&                                                                                              (26) 
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The substitution of L from (25) into Eq. (7) and splitting with respect to the powers of 

u&  and ν&  gives the following system of PDEs: 

0u =τ ,                                                         

(27)  

0=τν ,                                    (28) 
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The analysis of (34) yields the following two cases: 

 

 Case 1.  n=0 )1q,1p( −=−=   

This case provides us with two Noether point symmetries namely, ν∂∂ν−∂∂= /u/uX1   

and .t/X2 ∂∂=  For both cases B=0. Using Theorem 1, we obtain the Noether's first 

integrals corresponding to 1X  and 2X as 

ν−ν= && uuI1  and  ν++ν= lnulnuI2
&& , respectively. 

 

Case 2.  n= 1−  )1q,1p( −=−=   

Here we also obtain two Noether operators; ν∂∂ν−∂∂= /u/uX1  with B=0 

and u/u2t/tX2 ∂∂+∂∂= with B= tln2− . Invoking Theorem 1 due to Noether, we 

obtain the first integrals associated with 1X and 2X as 
11
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&&& respectively. 

 

4. PARTIAL NOETHER OPERATORS OF THE LANE-EMDEN SYSTEM (2) 

 

According to definition 2, the operator X in (3) is a partial Noether operator 

corresponding to a partial Lagrangian 

ν= &&utL n ,                                                                                                                       (35) 

of the Lane-Emden system (2) if there exists a function ),u,t(B ν such that it satisfies 

(9). The operator X satisfies the following system: 
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A routine calculation for the above system yields 
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Hence we obtain a single partial Noether operator viz., 
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for the system (2) with condition  (46).  Thus we see that in this case the partial Noether 

operator is the same as in the Noether case. The difference resides in the value of the 

gauge function B. Using Theorem 2, and the partial Noether operator X we obtain the 

first integral 

 

.utut
1q

)1n(
ut

1p

)1n(

1q
t

1p

u
tI 1nnn

1q
1n

1p
1n ν+ν

+
+

+ν
+
+

+
+

ν
+

+
= +

+
+

+
+

&&&&  

 

which also coincides with the Noether case. 

 

We now consider the case when 1p −=  and 1q −= , viz.,  (25). 

Using the partial Lagrangian ν= &&utL n  and following the above procedure we arrive at 

the following two cases. 

 

Case 1.  n=0 )1q,1p( −=−=    

Here we obtain two partial Noether symmetry generators namely, ν∂∂ν−∂∂= /u/uX1   

with B=0 and t/X2 ∂∂= with .lnulnB ν+=  We note that these partial Noether 

operators are identical to the Noether operators. However, the gauge function B is 

different for 2X . Invoking Theorem 2, we obtain the first integrals associated with  1X  

and 2X   as 

ν−ν= && uuI1  and  ,lnulnuI2 ν++ν= &&  respectively. 

 

Case 2. n= 1−  )1q,1p( −=−=   
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In this case we obtain two partial Noether operators, which are identical to the Noether 

operators. However, we note that the gauge function tln2lnulnB −ν+=  

corresponding to 2X  is different. Using Theorem 2, we obtain the first integrals 

corresponding to 1X  and 2X as  
11

1 tutuI −− ν−ν= && and ,utu2lnulntln2I 1

2 ν+ν−ν++−= −
&&& respectively. 

 

5. CONCLUDING REMARKS 

  

We have studied Noether and partial Noether operators with respect to the 

Lagrangian and partial Lagrangian of the Lane-Emden system (2). We obtained three 

cases, which resulted in Noether and partial Noether operators. For each of these three 

cases we obtained the first integrals corresponding to the Noether and partial Noether 

operators. We have seen that the first integrals associated with the Noether and partial 

Noether operators are the same for the Lane-Emden system. However, the gauge 

function B is different for some cases. This is due to the fact that different Lagrangian 

was used for the respective approaches. Further work on systems from a partial 

Lagrangian viewpoint can be done as systems in general do not admit Lagrangians. 
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