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Abstract- In this paper, we apply the modified variational iteration method (MVIM) for 

solving Schrödinger equations. The proposed modification is made by introducing He’s 

polynomials in the correction functional of variational iteration method (VIM). The 

suggested iterative scheme finds the solution without any discretization, linearization or 

restrictive assumptions. The use of Lagrange multiplier coupled with He’s polynomials 

are the clear advantages of this technique over the decomposition method. Several 

examples are given to verify the reliability and efficiency of the proposed algorithm. 
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1. INTRODUCTION 

          Many problems in natural and engineering sciences are modeled by partial 

differential equations. These equations arise in number of scientific models such as the 

propagation of shallow water waves, fluid mechanics, long wave and chemical reaction-

diffusion models, (see Abbasbandy [1, 2] Abdou and Soliman [4, 5], Abassy et. al. [6], 

Baitha et. al. [7], Bizar and Ghazvini [8], Wakil et. al. [9], Ganji et. al.[10], Ghorbani 

and Nadifi [11, 12], Golbabi and Javidi [13], He [14-25], Inokuti et. al. [27], Lu [28], 

Ma [29], Momani and Odibat [30], Noor and Mohyud-Din [31, 32, 34-37], Rafi and 

Danili [38], Sweilman [39], Sadighi and Ganji [40]). A substantial amount of work has 

been invested for solving such models. Several techniques including method of 

characteristic, Riemann invariants, combination of waveform relaxation and multi grid, 

periodic multi grid wave form, variational iteration, homotopy perturbation and 

Adomian’s decomposition, (see Abbasbandy [1, 2] Abdou and Soliman [4, 5], Abassy et. 

al. [6], Baitha et. al. [7], Bizar and Ghazvini [8], Wakil et. al. [9], Ganji et. al.[10], 

Ghorbani and Nadifi [11, 12], Golbabi and Javidi [13], He [14-25], Inokuti et. al. [27], 

Lu [28], Ma [29], Momani and Odibat [30], Noor and Mohyud-Din [31, 32, 34-37], Rafi 

and Danili [38], Sweilman [39], Sadighi and Ganji [40]) have been used for the 

solutions of such problems. Most of these techniques encounter the inbuilt deficiencies 

and involve huge computational work. He developed the variational iteration and 

homotopy perturbation methods for solving linear, nonlinear, initial and boundary value 

problems, (see He [14-26]). These methods are fully synchronized with the versatile 

nature of the problems and have been applied to solve a wide class of initial and 

boundary value problems, (see Abbasbandy [1, 2] Abdou and Soliman [4, 5], Abassy et. 

al. [6], Baitha et. al. [7], Bizar and Ghazvini [8], Wakil et. al. [9], Ganji et. al.[10], 

Ghorbani and Nadifi [11, 12], Golbabi and Javidi [13], He [14-25], Inokuti et. al. [27], 
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Lu [28], Ma [29], Momani and Odibat [30], Noor and Mohyud-Din [31, 32, 34-37], Rafi 

and Danili [38], Sweilman [39], Sadighi and Ganji [39]). Recently, Ghorbani et. al. 

introduced He’s polynomials by splitting the nonlinear term and also proved that He’s 

polynomials are fully compatible with Adomian’s polynomials but are easier to 

calculate and are more user friendly (see Ghorbani et. al. [11, 12]). More recently, Noor 

and Mohyud-Din combined He’s polynomials and correction functional of the 

variational iteration method (VIM) and applied this reliable version to a number of 

physical problems; (see Noor and Mohyud-Din [34-36]). The paper is devoted to the 

study of an important type of partial differential equation which is called the 

Schrödinger equation, is of the form 

( ) ,1),(0,,0 2 −===+ ixfxuuiu xxt  

or 

( ) ,1),(0,,0 22
−===++ ixfxuuuuiu xxt γ  

and arises in various areas of applied sciences including nonlinear optics, plasma 

physics, super conductivity and quantum mechanics, (see, Sadighi and Ganji. [39] and 

the reference therein). Several techniques including decomposition and homotopy 

perturbation have been employed for the solution of such problems, (see, Mohyud-Din 

and Noor [32], Sadighi and Ganji [39]). In this paper, we apply the modified variational 

iteration method (MVIM) which is formulated by the elegant coupling of variational 

iteration method (VIM) and He’s polynomials for solving Schrödinger equations. It is 

shown that the MVIM provides the solution in a rapid convergent series. We write the 

correction functional for the Schrödinger equations and calculate Lagrange multiplier 

optimally via variational theory. The He’s polynomials are introduced in the correction 

functional. The use of Lagrange multiplier reduces the successive application of the 

integral operator and minimizes the computational work.  Moreover, the selection of the 

initial value is done very carefully because the approximants are heavily dependent on it. 

Several examples are given to illustrate the reliability and performance of the proposed 

method. It is to be highlighted that the modified variational iteration method (MVIM) 

has certain advantages as compare to the decomposition method. Firstly, the use of 

Lagrange multiplier reduces the successive applications of the integral operator and 

hence minimizes the computational work to a tangible level while still maintaining a 

very high level of accuracy. Moreover, He’s polynomials are easier to calculate as 

compare to Adomian’s polynomials and this gives it a clear edge over the traditional 

decomposition method. The MVIM is also independent of the small parameter 

assumption (which is either not there in the physical problems or difficult to locate) and 

hence is more convenient to apply as compare to the traditional perturbation method. It 

is worth mentioning that the MVIM is applied without any discretization, restrictive 

assumption or transformation and is free from round off errors. We apply the proposed 

MVIM for all the nonlinear terms in the problem without discretizing either by finite 

difference or spline techniques at the nodes, involves laborious calculations coupled 

with a strong possibility of the ill-conditioned resultant equations which is a 

complicated problem to solve. Moreover, unlike the method of separation of variables 

that requires initial and boundary conditions, the VIMHP provides the solution by using 

the initial conditions only, (see Noor and Mohyud-Din [34-36]). 
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2. VARIATIONAL ITERATION METHOD (VIM) 

 

To illustrate the basic concept of the He’s VIM, we consider the following general 

differential equation 

),(xguNuL =+       (1) 

where L is a linear operator, N a nonlinear operator and g(x) is the inhomogeneous term. 

According to variational iteration method (see Abbasbandy [1, 2] Abdou and Soliman 

[4, 5], Abassy et. al. [6], Baitha et. al. [7], Bizar and Ghazvini [8], Wakil et. al. [9], 

Ganji et. al.[10], Golbabi and Javidi [13], He [14, 16, 21-26], Inokuti et. al. [27], Lu 

[28], Momani and Odibat [30], Noor and Mohyud-Din [31, 33-37], Rafi and Danili [38], 

Sweilman [39]), we can construct a correction functional as follows 

,))()(~)(()()(
0

1 dssgsuNsuLxuxu

x

nnnn −++= ∫+ λ        (2) 

where λ is a Lagrange multiplier (see He [14, 16, 21-26]). which can be identified 

optimally via variational iteration method. The subscripts n denote the nth 

approximation, nu
~  is considered as a restricted variation. i.e. ;0~ =nuδ  (2) is called a 

correction functional. The solution of the linear problems can be solved in a single 

iteration step due to the exact identification of the Lagrange multiplier. The principles of 

variational iteration method and its applicability for various kinds of differential 

equations are given in (see He [14, 16, 21-26]). In this method, it is required first to 

determine the Lagrange multiplier λ  optimally. The successive approximation 

0,1 ≥+ nun  of the solution u will be readily obtained upon using the determined 

Lagrange multiplier and any selective function ,0u consequently, the solution is given 

by .lim n
n
uu

∞→
=   

 

3. HOMOTOPY  PERTURBATION METHOD (HPM) 

 

To explain the He’s homotopy perturbation method, we consider a general equation of 

the type, 

,0)( =uL           (3) 

where L is any integral or differential operator. We define a convex homotopy H (u, p) 

by 

),()()1(),( upLuFppuH +−=        (4) 

where F (u) is a functional operator with known solutions v0, which can be obtained 

easily. It is clear that, for 

,0),( =puH           (5) 

we have 

),()0,( uFuH =  ).()1,( uLuH =  

This shows that ),( puH continuously traces an implicitly defined curve from a starting 

point H (v0, 0) to a solution function H (f, 1). The embedding parameter monotonically 

increases from zero to unit as the trivial problem F (u) = 0 is continuously deforms the 

original problem L (u) = 0. The embedding parameter p ∈(0, 1] can be considered as an 
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expanding parameter (see Ghorbani and Nadifi [11, 12], He [14-20], Noor and Mohyud-

Din [31, 32, 34-37], Xu [42]). The homotopy perturbation method uses the homotopy 

parameter p as an expanding parameter (see He [14-20]) to obtain  

,3

32

10

0
2

L++++==∑
∞

=

upupupuupu
i

i

i       (6) 

if p →  1, then (6) corresponds to (4) and becomes the approximate solution of the form, 

.lim
0

1
∑
∞

=
→

==
i

i
p

uuf        (7) 

It is well known that series (7) is convergent for most of the cases and also the rate of 

convergence is dependent on L (u); (see He [14-20]). We assume that (7) has a unique 

solution. The comparisons of like powers of p give solutions of various orders. In sum, 

according to (Ghorbani and Nadifi [11, 12]), He’s HPM considers the solution, )(xu , of 

the homotopy equation in a series of p  as follows: 

 ...)(
2

2

10

0

+++==∑
∞

=

upupuupxu
i

i

i ,                                                  

 and the method considers the nonlinear term )(uN  as  

  ...)(
2

2

10

0

+++==∑
∞

=

HpHpHHpuN
i

i

i ,         

where nH ’s are the so-called He’s polynomials (Ghorbani and Nadifi [11, 12]), which 

can be calculated by using the formula 
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4. MODIFIED VARIATIONAL ITERATION METHOD (MVIM) 

 

The modified variational iteration method (MVIM) is obtained by the elegant coupling 

of correction functional (2) of variational iteration method (VIM) with He’s 

polynomials and is given by  

.)()()~()()()(
00

)(

0

)(

0

0

0

)( dssgsdsuNpuLpspxuup
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∞
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(8) 

Comparisons of like powers of p give solutions of various orders (see Noor and 

Mohyud-Din [34-37]).  

 

5. NUMERCICAL APPLICATOIONS 

 

In this section, we apply the modified variational iteration (MVIM) for solving 

Schrödinger equations. The results are very encouraging indicating the reliability and 

efficiency of the proposed method.  

Example 5.1 Consider the following linear Schrödinger equation 

,0=+ xxt iuu  
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with initial conditions 

).2(cos21)0,( xhxu +=  

The correction functional is given as 

( ) .~)()2(cos21),(
0

1 dsui
s

u
sxhtxu

xxn
n

t

n 






 +
∂
∂

++= ∫+ λ  

Making the correction functional stationary, the Lagrange multipliers can be identified 

as ,1)( −=sλ  consequently 

( ) .)2(cos21),(
0

1 dsui
s

u
xhtxu

xxn

n

t

n 







+

∂

∂
−+= ∫+  

Applying the modified variational iteration method (MVIM) 

( ) .)2(cos21 10
2210
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10 dspuui
s

u
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u
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xx
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∂
+

∂

∂
+

∂

∂
−+=++ ∫ LLL  

Comparing the co-efficient of like powers of p, approximants are obtained 

),2(cos21),(: 0

)0( xhtxup +=  

( ),41)2(cos21),(: 1

)1( itxhtxup −+=  

( ),841)2(cos21),(: 2

2

)2( titxhtxup −−+=  

.

,
3

32
841)2(cos21),(: 32

3

)3(

M


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



 +−−+= ittitxhtxup
 

The solution in a series form is given by 

( ) ( ) ( )
,

!4

4

!3

4

!2

4
41)2(cos21),( 4

4

3

3

2

2









++−+−+= Lt

it
t

it
t

it
itxhtxu  

and in a closed form by 

.)2(cos21),( 4itexhtxu −+=  

Example 5.2 Consider the following linear Schrödinger equation 

,0=+ xxt iuu  

with initial conditions 

.)0,( 3ixexu =  

The correction functional is given as 
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Making the correction functional stationary, the Lagrange multipliers can be identified 

as ,1)( −=sλ  consequently 
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Applying the modified variational iteration method (MVIM) 
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Comparing the co-efficient of like powers of p, approximants are obtained 

,),(: 3
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1
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,
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The solution in a series form is given by 
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and in a closed form by 
( ).),( 33 txietxu +=  

Example 5.3 Consider the following nonlinear Schrödinger equation 

,02
2
=−+ uuuiu xxt  

with initial conditions 

.)0,( ixexu =  

The correction functional is given as 

( )( ) .~~2~)(),(
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Making the correction functional stationary, the Lagrange multipliers can be identified 

as ,1)( −=sλ  consequently 
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Applying the modified variational iteration method (MVIM) 
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Comparing the co-efficient of like powers of p, approximants are obtained 
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The solution in a series form is given by 
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6. CONCLUSION 

 

In this paper, we applied modified variational iteration method (MVIM) for solving 

Schrödinger equations. The method is applied in a direct way without using 

linearization, transformation, discretization or restrictive assumptions. It may be 

concluded that MVIM is very powerful and efficient in finding the analytical solutions 

for a wide class of boundary value problems. The method gives more realistic series 

solutions that converge very rapidly in physical problems. It is worth mentioning that 

the method is capable of reducing the volume of the computational work as compare to 

the classical methods while still maintaining the high accuracy of the numerical result.  
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