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Abstract- Independent wire rope core (IWRC) is one of the fundamental components of 
complex wire ropes. It is a complex geometry and constructed by wrapping wire strands 
over a straight wire strand. The outer wires of the IWRC are double helical shaped 
feature which can be only modeled using special treatment. The aims of this paper are to 
introduce a new technique of modeling wire rope with IWRC and to compare numerical 
results obtained from this model with available results in the literature. Therefore the 
model generation for a simple straight strand is explained and accuracy of this model is 
validated. Furthermore this modeling procedure is adapted to whole wire rope structure 
considering double helical geometry concept. The proposed rope model gives 
remarkable results by means of wire by wire analysis scheme. This model is found 
easier and more effective. The results show good agreement with other available results 
but with a simpler and more practical approach.  
 

Key Words- Independent wire rope core, double helical geometry, relative rotation, 
modeling wire rope 
 

1. INTRODUCTION 

 

 Theory of wire rope is based on the equilibrium equations introduced by the 
Love in a well-known classical treatise [1]. Most of the analytical studies are relied on 
the solutions of the equilibrium equations without frictional effects due to the difficulty 
of the theory. Even the geometry of the wire rope has a complicated nature and the 
equilibrium equations become nonlinear and it is difficult to solve without linearization 
processes mostly. A basic and simpler model considered for analytical applications is a 
simple straight strand. It is composed of a straight wire surrounded with six single 
helical wires. This simple straight strand is used as a core strand while constructing 
complicated wire ropes. 

An independent wire rope core (IWRC) is a principle component of complex 
wire rope. It is used as a rope by itself in some rare applications but commonly it is used 
as a core for more complicated designs of wire ropes such as Seale IWRC and 
Warrington IWRC. On the design of IWRC, a simple straight strand as a core strand is 
wound by six outer strands. IWRCs are preferred when the wire rope is run under large 
lateral compressive loads and additional axial loading capacity is required [2]. 

In the literature a number of analytical studies are available for IWRC [3-10]. 
These studies are mostly used the superposition method which takes core strand and 
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outer strands as a straight wire and single helical wires respectively to model IWRC as 
if a simple straight strand and then solve the whole system. Static response of a simple 
straight strand is presented in [3] using the theory of Love. Costello has also presented 
variety of studies about the frictionless theory of wire ropes in his reference book [4]. It 
includes the static response of reduced rope rotation, bird caging, and bending theory of 
wire ropes. A wire rope with complex cross sections as a Seale IWRC is analyzed in [5] 
which discuss the prediction of the axial static response of a wire rope. A general 
nonlinear theory to analyze complex wire rope is developed as an extension of the 
frictionless strand theory of Costello for a Seale IWRC in [6]. A number of analytical 
models of twisted wire ropes under axis-symmetric loads are compared simultaneously 
with each including the available test results in [7]. Among them Phillips & Costello’s 
model [8] is remarkable which represents excellent correlation with the available 
experimental results in the literature. In most of the theoretical studies over the IWRCs 
some kind of homogenization hypothesis used except the theoretical studies given in 
[9,10]. Outer double helical wire centerline of the IWRC can be obtained by using the 
parametric equations given in [9]. Using the analytical solutions of the wire rope theory 
it is not possible to analyze and get the results at any specific point of the generated 
model. 

Therefore finite element approach has been adapted to model and analysis of this 
problem. An early finite element approach which intends to show the termination of the 
end effects and the frictional behavior of a wire strand is given in [11]. A concise finite 
element model which models a basic sector of the wire strand taking into account the 
helical symmetry features and three-layered straight helical wire ropes are presented 
respectively in [12,13]. Due to the need for huge computational capacity and using the 
symmetry most of the studies in the literature are carried over a simple straight strand 
with considering a basic sector or an arc length of the model in [12]. Meanwhile there is 
no available tool for creating a double helical solid geometry in commercial modeling 
computer software for the moment. For this reason parametric equation of the double 
helical geometry is used to construct solid wire geometry which is used while modeling 
an IWRC in this study. 

While the general parametric equations of the double helical geometry are 
presented in the literature, there is no available numerical model by using the advantage 
of the double helical geometry at present. The aim of the present study is to propose a 
new modeling scheme for IWRC by using the double helical geometry. Proposed 
numerical model without and with frictional effects are considered and the boundary 
conditions are defined. The numerical results for IWRC are presented and discussed 
which takes into account wire by wire based analysis. 
 

2. MODELING DOUBLE HELICAL GEOMETRY 

 
 An independent wire rope core (IWRC) is a complex geometry and constructed 
by wrapping wire strands over a straight wire strand. The outer wires of the IWRC are 
double helical shaped elements. Cross-section of IWRC model is illustrated in Figure 1-
(a) with a simple straight strand as a core and six outer strands around it.  
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           (a)         (b) 

Figure 1. (a) (6x7) wire IWRC cross section, (b) (1+6) wire simple straight strand 

 
A simple straight wire strand composed by a straight center wire of radius 1R  

and it is surrounded by six single helical wires of radius 2R  with the helix angle 2α  as 

shown in Figure 1-(b). The helix angle 2α  is determined by 2 2 2tan / 2p rα π= , where 2p  

is the pitch length of the single helical wires and 2 1 2r R R= + . 

Outer double helical wire centerline of the IWRC can be obtained by using the 
parametric equations given in [9]. Each outer wire of the outer strand with a double 
helical geometry is separately modeled. To define the location of an outer single helix 
centerline, Cartesian coordinate system ( , , )x y z  is used with the Cartesian frame 

{ }, ,x y ze e e  and the location along the centerline of a single helix is defined as, 

 
cos( ),   sin( ),   tan( ) ,s s s s s s s s s sx r y r z rθ θ α θ= = =  (1) 

 
where ze  is the rope axis, sr  is the radius of the single helix, sα  is the single helix 

laying angle and sθ  is the angle showing the position of the wire within a strand which 

is given as 0 .sθ θ θ= +  Free angle θ  is used to define the location of the wire around the 

rope axis ze , relative to xe  while single helix phase angle is defined by 0 ( 0)zθ θ == . The 

outer double helical wires are wound around a single helical wire by using the location 
along the centerline of a single helix given in equation (1) and the location of the double 
helices can be defined as [9], 
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where dr  is the distance along the double helical wire centerline and single helical 

centerline and 0d s dθ ηθ θ= +  shows the rotation of the double helical wire around the 

single helical center wire of the outer strand, η  is the construction parameter which 

shows the frequency of the wire along the helix length and 0dθ  is the wire phase angle. 

The construction parameter η  is a ratio of angle of double helical wire rotation to the 

angle of outer helical strand rotation. This ratio is dependent on the angles of both 
helices and computed as a constant value for the model. It is considered to be important 
in characterizing the rope structure, specifically the relationship between the wire and 
strand helices, and is called the "relative rotation". The relative rotation will be positive 
for lang lay ropes and negative for regular lay ropes. Centroidal axes of both strand and 
wire can be considered lying on right circular cylinders which can be developed into a 
plane as shown in Figure 2. 

  

(a) Strand helix    (b) Double wire helix 

Figure 2: Developed view of strand helix and double wire helix 

 
Using the developed view of the strand helix given in Figure 2-(a) the 

relationships between the length of rope rS , length of strand sS  and the angle of strand 

rotation sθ  can be obtained as, 

 
tanr s s sS rθ α= , (3) 

cos
s s

s

s

r
S

θ

α
=  (4) 

where sr , sθ  and sα  shows radius of the strand, angle of the strand rotation and strand 

helix angle respectively [14]. Similarly, the relationships between the length of strand 

sS , length of wire dS  and the angle of double helical wire rotation dθ  can also be 

obtained by using the developed view of the wire helix given in Figure 2-(b) as, 
 

tans d d dS r θ α= , (5) 
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where dr , dθ  and dα  shows radius of the wire helix, angle of the wire rotation and wire 

helix angle respectively. Because the length of strand obtained from the wire helix must 
equal that obtained from the strand helix for a given length of rope, a new term η  is 

defined to be the ratio of the angle of double helical wire rotation dθ  to the angle of 

strand rotation sθ , which can be obtained from equations (4) and (5) as [14], 

 

tan cos
d s

s d d s

r

r

θ
η

θ α α
= = , (7) 

 
where η  shows the ratio of the angle of double helical wire rotation to the angle of 

strand rotation. The ratio of η  is important wile modeling the double helical wires. This 

parameter computed and used as a constant parameter while modeling all the double 
helical wires along an outer strand. According to equation (2) a right lay double helix 
can be constructed. To construct a left lay double helix, it is enough to negate one of the 
coordinate values of dx , dy  or dz  given in equation (2). 

For the solid model generation issues using the preceding double helical 
geometry definition, Frenet-Serret frames constructed over the centerline of the double 
helical wire defined by equation (2). Using the Frenet-Serret frame a plane which is 
perpendicular to the centerline of the double helical geometry is defined. A circle is 
created over the generated plane which is designed to be perpendicular to the centerline 
of the double helical wire curve.  

Both procedures for drawing the centerline of the double helical wire and the 
circle over a plane which is perpendicular to the centerline of the double helical wire are 
necessary to find control nodes. These control nodes are computed by a new generated 
algorithm and code with using Matlab® and written to a text file in an appropriate 
format. Then the control nodes are imported in Hypermesh® and a double helical 
centerline curve and a circle perpendicular to this curve is generated. A surface is 
defined over the created circle and this surface is swept along the centerline of the 
double helical wire to construct a meshed form of a double helical wire. This procedure 
is repeated for each wire. Center wire of the core strand, inner single helical wires and 
outer single helical wires can also build by similar generated codes and algorithms as 
well. All the generated meshed wires are imported in Abaqus/CAE® and assembled to 
compose IWRC. Even if these procedures seem to be a little bit complicated there is no 
other way to produce a good double helical geometry which can be used for analysis 
purposes. Also the advantage of this scheme is that the model has no length limitations 
because of the meshed form of the generated solid wires. This scheme can be adopted to 
generate a double helical wire using other solid generating commercial CAD 
applications but the produced solid parts include problematic surfaces and meshing 
process fails depending on the length of the model. The proposed scheme solves the 
meshing problems of this complicated geometry and helps to compose ready to analyze 
geometries by applying necessary boundary conditions. The meshed IWRCs generated 
by the proposed scheme for different lay types are presented in Figure 3. 
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    (a) Right Lang Lay     (b) Left Lang Lay       (c) Right Regular Lay     (d) Left Regular Lay 

Figure 3: Meshed IWRC model with different lay types; 

 
3. NUMERICAL MODELS AND SOLUTIONS 

 

Modeling parameters for both simple straight strand and IWRC are prescribed in 
Table 1 and abbreviations are defined in Figure 1-(a). The wire material properties used 
in the elastic-plastic finite element analysis (FEA) are defined as; Young’s modulus 
E=188000 N/mm

2, plastic modulus Ep=24600 N/mm
2, yield stress Rp0.2=1540 N/mm

2, 
ultimate tensile stress Rm=1800 N/mm

2, Poisson’s ratio v=0.3 and friction coefficient 
µ=0.115 [11]. Numerical models are created by the proposed scheme as described and 
solved using the finite element code Abaqus/CAE®. FEA results are compared with the 
available test and analytical results. 
 

Table 1: Design parameters of a simple straight wire strand (WS) and IWRC 
 

Simple straight strand IWRC 

Parameter Value Parameter Value Parameter Value 
Strand radius 5.7mm IWRC radius 29.80mm Pitch length of IH, p2 70mm 
CW radius, R1 1.97mm CW radius, R1 1.97mm Pitch length of OCW, p*

2 193mm 
IH radius, R2 1.865mm IH radius, R2 1.865mm Pitch length of DH, p4 70mm 
Strand length, h 14mm OCW radius, R3 1.6mm Helix angle of IH, α2 71.01o 
Pitch length, p 115mm DH radius, R4 1.5mm Helix angle of OCW, a*

2 71.46o  
Helix angle, α 78.2o IWRC length, h 18mm Helix angle of DH, α4 74.45o 

 
The values of elastic and elasto-plastic reaction forces were calculated by finite 

element method, therefore Abaqus/CAE® software that is a general-purpose finite 
element code was used for solving wire rope problem. Throughout the finite element 
analysis solid brick elements are used. The solid (or continuum) elements can be used 
for linear analysis and for complex nonlinear analyses involving contact, plasticity, and 
large deformations. They are available for stress, heat transfer, acoustic, coupled 
thermal-stress, coupled pore fluid-stress, piezoelectric, and coupled thermal-electrical 
analyses. Element type of C3D20 was chosen as a 20-node quadratic brick element that 
is used for 3-D modeling of solid structures. Element type C3D20 has 27 integration 
points as shown in Figure 4. The element is defined by 20 nodes having three degrees of 
freedom at each node: translations in the nodal x, y and z directions. Isotropic material 
behavior is defined and material directions correspond to the element coordinate 
directions. The meshed model has total number of 92410 nodes, 17922 quadratic 
hexahedral elements of type C3D20 [15,16].  
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(a) node numbering   (b) 3x3x3 integration point scheme 

 

Figure 4: C3D20 type 20-node brick element node numbering and integration points 

 
3.1. Validity of the proposed model of a simple straight strand 

As a benchmark problem a wire strand is modeled and FEA results are compared 
with both analytical results of Costello [4] and the test results reported by Utting&Jones 
[17,18]. Numerical model without friction and with friction are developed over a simple 
straight strand respectively. Axial loading behavior is investigated by applying an axial 
strain ε  of 0.015 to the free end of the strand with the increments of 0.001 while the 
other end of the strand is constraint to be fixed. Meanwhile the free end of the strand is 
restrained for zero rotation. The proposed numerical model is solved using FEA and the 
variation of axial force with the axial strain is presented in Figure 5.  

 

 
Figure 5: Variation of axial force with axial strain for the simple straight strand 

 
It can be easily seen from this figure that the proposed numerical model solution 

with FEA is in good agreement with both the theory of Costello [4] and test results 
reported by Utting & Jones [17,18]. Plastic behavior of the material is also shows good 
agreement with the reported test results and this identity of the solution proofs the 
validity of the proposed numerical model. 
 
3.2. Wire by wire elastic-plastic FEA of an IWRC 

An 18mm length (6x7) wire right Lang lay IWRC is modeled using the double 
helical geometry with the developed modeling scheme proposed in this paper. The 
meshed model of the IWRC is solved using the prescribed boundary conditions. Fixed 
end of the model is constraint to be encastre boundary condition while the free end of 
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the model is restrained for zero rotation. An axial strain ε  of 0.015 is applied to the free 
end of the model with the increments of 0.001. The proposed numerical model is solved 
using FEA and the variation of axial force with the axial strain is presented in Figure 6. 

 

 
Figure 6: Variation of axial force with axial strain for RLL IWRC 

 

It can be easily seen from the figure that the proposed numerical model results 
with FEA are in good agreement with the theory of Costello-Velinsky models [4,5] in 
elastic area and the plasticity results show similar perception as simple straight strand 
presented in Figure 5. 

Variations of the axial force with the axial strain results are presented with wire 
by wire based insights for a right Lang lay IWRC in Figure 7. Core strand and outer 
strand wires are titled and shown in the figure and described in Table 1.  

 

 
Figure 7: Wire by wire analysis, theory and FEA comparison of a RLL IWRC 

 
 

The theoretical results of Costello-Velinsky model and FEA results show good 
agreement among the elastic area. The elastic behavior ends when the value of the 
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applied axial strain ε  reached to 0.008 and then the plastic behavior of the model exists 
after 0.008 axial strains as in Figure 7. 

A wire by wire load distribution is investigated by the analysis of a right Lang 
lay IWRC and load percentages for each wire are listed in Table 2. When the loads are 
sorted according to their percentages, center wire of the core strand carries the major 
portion of axial load. Load distribution over the outer strand is calculated from wire by 
wire analysis. It can be seen that double helical wires (labeled as DH3, DH4, and DH5) 
close to the core strand carries higher amount of the outer strand’s axial load. If the 
axial load of the core strand is compared with the outer strand of the IWRC, core strand 
carries an average 20.18% while one of the outer strands carries an average 13.30% of 
the total axial load. 
 

Table 2: Wire by wire axial load distribution of the IWRC 
 

Wire Load distribution 

Core Strand 20.18% 

CW 3.86% 
1 of 6 IH 2.72% 

1 of 6 outer strands 13.30% 

OCW 2.21% 
DH 1 1.69% 
DH 2 1.74% 
DH 3 1.90% 
DH 4 2.02% 
DH 5 1.96% 
DH 6 1.79% 

 
Total wires = 100.00 % 

 

To get cost effective wire rope, the optimization of wire composition in the rope 
can be valuable issue. Therefore the load distribution presented in this paper can be used 
for optimization of the wire rope. 

 
4. CONCLUDING REMARKS 

 

 A wire rope model generation is accomplished by using the double helical 
geometry proposed in this paper. Generated model of a simple straight strand shows 
good agreement with the available test and theoretical results for both frictionless and 
with frictional effects respectively. Furthermore a complete independent wire rope core 
is analyzed by means of wire by wire scheme. The results for IWRC are compared with 
those obtained by theoretical ones. The numerical results show reasonable agreement 
with other available results, with a simpler and more practical approach. Also the 
proposed modeling issue gives future opportunity to analyze more complicated 
problems such as bending over a sheave. 
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