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Abstract- This paper outlines a comparison of the couplings of He’s and Adomian’s 

polynomials with correction functional of variational iteration method (VIM) to 

investigate a solution of Flierl-Petviashivili (FP) equation which plays a very important 

role in mathematical physics, engineering and applied sciences. These elegant couplings 

give rise to two modified versions of VIM which are very efficient in solving initial and 

boundary value problems of diversified nature. Moreover, we also introduces a new 

transformation which is required for the conversion of the Flierl-Petviashivili equation 

to a first order initial value problem and a reliable framework designed to overcome the 

difficulty of the singular point at .0=x  The proposed modified versions are applied to 

the reformulated first order initial value problem which gives the solution in terms of 

transformed variable. The desired series of solution is obtained by making use of the 

inverse transformation. It is observed that the modification based on He’s polynomials 

is much easier to implement and is more user friendly.  

 

Key words- Flierl-Petviashivili equation, variational iteration method, He’s 
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1. INTRODUCTION 

The Flierl-Petviashivili (FP) equation is used to model several phenomena in 

mathematical physics, astrophysics, theory of stellar structure, thermal behavior of a 

spherical cloud of gas, isothermal gas spheres and theory of thermionic currents, (see 

Adomian [5], Russell and Shampine [41], Shawagfeh [44] Wazwaz [48]). Several 

techniques including decomposition and homotopy perturbation have been applied for 

solving FP equation, (see Adomian [5], Russell and Shampine [41, Shawagfeh [44] 

Wazwaz [48]). Most of the developed techniques have their limitations like limited 

convergence, divergent results, linearization, discretization unrealistic assumptions and 

non-compatibility with the physical problems. He foresaw the potential and 

compatibility of variational iteration and homotopy perturbation methods and exploited 

this reliable technique for solving physical problems of diversified nature, (see He [17-

29]). These methods are fully synchronized with the versatile nature of the problems 

and have been applied to solve a wide class of initial and boundary value problems, (see 

Abbasbandy [1, 2] Abdou and Soliman [6, 7], Abassy et. al. [8], Baitha et. al. [10], 
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Bizar and Ghazvini [11], Wakil et. al. [12], Ganji et. al.[13], Ghorbani and Nadifi [14, 

15], Golbabi and Javidi [16], He [17-29], Inokuti et. al. [30], Lu [31], Ma and You [32], 

Momani and Odibat [33], Noor and Mohyud-Din [34-40], Russel and Shampine [41], 

Rafi and Danili [42], Sweilman [43]). Abbasbandy introduced the coupling of 

Adomian’s polynomials with the correction functional of the VIM and applied this 

reliable version for solving Riccati differential and Klein Gordon equations (see 

Abbasbandy [1, 2]). In a later work, Noor and Mohyud-Din exploited this concept for 

solving various singular and non singular boundary and initial value problems (see Noor 

and Mohyud-Din [35, 40]). Recently, Ghorbani et. al. introduced He’s polynomials by 

splitting the nonlinear term and also proved that He’s polynomials are fully compatible 

with Adomian’s polynomials but are easier to calculate and are more user friendly (see 

Ghorbani et. al. [14, 15]). More recently, Noor and Mohyud-Din combined He’s 

polynomials and correction functional of the variational iteration method (VIM) and 

applied this reliable version to a number of physical problems; (see Noor and Mohyud-

Din [37-39]). The basic motivation of the present study is the implementation and 

comparison of these two modified versions of VIM for solving FP equation. The 

singularity behavior at x = 0 is a difficult element in this type of equations which has 

been tackled by transforming the Flierl-Petviashivili (FP) equation to a first order initial 

value problem. The proposed modified versions are applied to the reformulated first 

order initial value problem which leads the solution in terms of transformed variable. 

The desired series of solutions is obtained by implementing the inverse transformation. 

To make the work more concise and for the better understanding of the solution 

behavior the diagonal Pade´ approximants are applied. It is observed that the 

modification based on He’s polynomials (VIMHP) is much easier to implement as 

compare to the one (VIMAP) where the so-called Adomian’s polynomials along with 

their complexities are used. It is to be highlighted that the variational iteration method 

using He’s polynomials (VIMHP) has certain advantages as compare to the 

decomposition method. Firstly, the use of Lagrange multiplier reduces the successive 

applications of the integral operator and hence minimizes the computational work to a 

tangible level while still maintaining a very high level of accuracy. Moreover, He’s 

polynomials are easier to calculate as compare to Adomian’s polynomials and this gives 

it a clear edge over the traditional decomposition method. The VIMHP is also 

independent of the small parameter assumption (which is either not there in the physical 

problems or difficult to locate) and hence is more convenient to apply as compare to the 

traditional perturbation method. It is worth mentioning that the VIMHP is applied 

without any discretization, restrictive assumption or transformation and is free from 

round off errors. We apply the proposed VIMHP for all the nonlinear terms in the 

problem without discretizing either by finite difference or spline techniques at the 

nodes, involves laborious calculations coupled with a strong possibility of the ill-

conditioned resultant equations which is a complicated problem to solve. Moreover, 

unlike the method of separation of variables that requires initial and boundary 

conditions, the VIMHP provides the solution by using the initial conditions only. 

Finally, the variational iteration method using Adomian’s polynomials (VIMAP) is also 

easier to implement as compare to the traditional decomposition method due to the fact 

that it involves Lagrange multiplier which reduces the successive application of integral 

operator and hence minimizes the computational work. Moreover, the VIMAP is also 
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independent of the small parameter assumption, discretization, linearization or 

transformation and so may be considered as a more efficient and convenient algorithm 

as compare to the traditional techniques which involve these deficiencies. Moreover, the 

use of Lagrange multiplier in VIMHP gives it a clear advantage over the traditional 

homotopy perturbation method (HPM) since it avoids the successive application of the 

integral operator. The proposed modified versions (VIMHP and VIMAP) can be applied 

to a number of physical problems related to fluid mechanics including Blasius’ viscous 

flow, boundary layer flow with exponential or algebraic properties, Von Karman 

swirling viscous flow, nonlinear progressive waves in deep water, porous medium, 

financial mathematics, deep shallow water waves, electrical signals along a telegraph 

line, digital image processing, telecommunication, signals and systems, beam deflection 

theory, quantum field theory, relativistic physics, dispersive wave-phenomena, plasma 

physics, astrophysics, nonlinear optics, engineering and applied sciences, (see Noor and 

Mohyud-Din [37-39]). 

 

2. VARIATIONAL ITERATION METHOD (VIM) 

To illustrate the basic concept of the He’s VIM, we consider the following general 

differential equation 

),(xguNuL =+       (1) 

where L is a linear operator, N a nonlinear operator and g(x) is the inhomogeneous 

term. According to variational iteration method (see Abbasbandy [1, 2] Abdou and 

Soliman [6, 8], Abassy et. al. [8], Baitha et. al. [10], Bizar and Ghazvini [11], Wakil et. 

al. [12], Ganji et. al.[13], Ghorbani and Nadifi [14, 15], Golbabi and Javidi [16], He [17, 

24-29], Inokuti et. al. [30], Lu [31], Momani and Odibat [33], Noor and Mohyud-Din 

[34-40], Russel and Shampine [41], Rafi and Danili [42], Sweilman [43]), we can 

construct a correction functional as follows 

,))()(~)(()()(
0

1 dssgsuNsuLxuxu

x

nnnn −++= ∫+ λ        (2) 

where λ is a Lagrange multiplier (see He [17, 24-29]). which can be identified 

optimally via variational iteration method. The subscripts n denote the nth 

approximation, nu
~  is considered as a restricted variation. i.e. ;0~ =nuδ  (2) is called a 

correction functional. The solution of the linear problems can be solved in a single 

iteration step due to the exact identification of the Lagrange multiplier. The principles of 

variational iteration method and its applicability for various kinds of differential 

equations are given in (see He [17, 24-29]). In this method, it is required first to 

determine the Lagrange multiplier λ  optimally. The successive approximation 

0,1 ≥+ nun  of the solution u will be readily obtained upon using the determined 

Lagrange multiplier and any selective function ,0u consequently, the solution is given 

by .lim n
n
uu

∞→
=   

 

 

 



 

 

S. T. Mohyud-Din, M. A. Noor and K. I. Noor 

 

190 

3. HOMOTOPY PERTURBATION METHOD (HPM) 

To explain the He’s homotopy perturbation method, we consider a general equation of 

the type, 
,0)( =uL           (3) 

where L is any integral or differential operator. We define a convex homotopy H (u, p) 

by 

),()()1(),( upLuFppuH +−=        (4) 

where F (u) is a functional operator with known solutions v0, which can be obtained 

easily. It is clear that, for 

,0),( =puH           (5) 

we have 

),()0,( uFuH =  ).()1,( uLuH =  

This shows that ),( puH continuously traces an implicitly defined curve from a starting 

point H (v0, 0) to a solution function H (f, 1). The embedding parameter monotonically 

increases from zero to unit as the trivial problem F (u) = 0 is continuously deforms the 

original problem L (u) = 0. The embedding parameter p ∈(0, 1] can be considered as an 

expanding parameter (see Ghorbani and Nadifi [14, 15], He [17-23], Noor and Mohyud-

Din [34-40]). The homotopy perturbation method uses the homotopy parameter p as an 

expanding parameter (see He [17-23]) to obtain  

,3

32
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0
2

L++++==∑
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upupupuupu
i

i

i       (6) 

if p →  1, then (6) corresponds to (4) and becomes the approximate solution of the form, 

.lim
0

1
∑
∞

=
→

==
i

i
p

uuf        (7) 

It is well known that series (7) is convergent for most of the cases and also the rate of 

convergence is dependent on L (u); (see He [17-23]). We assume that (7) has a unique 

solution. The comparisons of like powers of p give solutions of various orders. In sum, 

according to (Ghorbani and Nadifi [14, 15]), He’s HPM considers the solution, )(xu , of 

the homotopy equation in a series of p  as follows: 
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 and the method considers the nonlinear term )(uN  as  
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where nH ’s are the so-called He’s polynomials (Ghorbani and Nadifi [14, 15]), which 

can be calculated by using the formula 
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4. MODIFIED VARIATIONAL ITERATION METHODS 

The modified variational iteration techniques are obtained by the elegant coupling of 

correction functional of VIM with He’s and Adomian’s polynomials. 

 

4.1 Variational Iteration Method Using He’s Polynomials (VIMHP) 

This modified version of variational iteration method is obtained by the elegant 

coupling of correction functional (2) of variational iteration method (VIM) with He’s 

polynomials and is given by  
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Comparisons of like powers of p give solutions of various orders (see Noor and 

Mohyud-Din [37-39]).  

 

4.2 Variational Iteration Method Using Adomian’s Polynomials (VIMAP) 

This modified version of VIM is obtained by the coupling of correction functional (2) of 

variational iteration method with Adomian’s polynomials and is given by  

,))()(()()(
00

1 dxxgAxuLxuxu
n

n

t

nnn −++= ∑∫
∞

=
+ λ     (9) 

where nA are the so-called Adomian’s polynomials and are calculated for various 

classes  of nonlinearities by using the specific algorithm developed in (see Abbasbandy 

[1, 2], Noor and Mohyud-Din [35, 40]). 

 

5. NUMERICAL APPLICATION 

In this section, we apply and compare both the modified versions of VIM for solving 

Flierl-Petviashivili (FP) equation.   

Consider the generalized variant of the Flierl-Petviashivili equation 

,0
1 1 =−−′+′′ +nn yyy
x

y        (10) 

with boundary conditions 

.0)(,0)0(,)0( =∞=′= yyy α             (11) 

For 1=n , above equation reduces to the standard Flierl-Petviashivili equation. The 

general series solution for the equation is to be constructed for all possible values 

of .1≥n  Using the transformation ),()( xyxxu ′=  the generalized Flierl-Petviashivili 

equation (10, 11) can be converted to the following first order initial value problem 
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with initial conditions 

.0)0(,0)0( =′= uu                     (13) 
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The correction functional is given as 
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Making the correction functional stationary, the Lagrange multiplier can easily be 

identified as ( ) .1−=sλ   
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Applying the variational iteration method using He’s polynomials (VIMHP), we get 
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Comparing the co-efficient of like powers of p, following approximants are obtained 
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The solution in a series form is given by 
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the inverse transformation will yield 
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Now, we apply the diagonal Pade´ approximants to the obtained series solution to 

handle the boundary conditions at infinity because power series in isolation are never 

useful in boundary value problems because mostly radius of convergence is not 

sufficiently large, (see Noor and Mohyud-Din [36], Wazwaz [48]). This makes the use 

of Pade´ approximants very essential in unbounded domain. The series solution is used 

to obtain various Pade´ approximants [2/2], [4/4], [6/6], [8/8]. Roots of the Pade´ 

approximants to the Flierl-Petviashivili monopole α  were obtained by using the limit of 

the Pade´ approximant [m/m] as
8

8 is 
b

a
x ∞→ , where mm ba  and  are the leading 

coefficients of the numerator and the denominator, respectively. For ,2 =n  the 

complex roots along with other real roots are discarded since these do not meet the 

physical requirements. 

        
TABLE 5.1 Roots of the Pade´ approximants monopole (Noor and Mohyud-Din [36], 

Wazwaz [48])       1  , =nα  

Degree Roots 

[2/2] -1.5 

[4/4] -2.50746 

[6/6] -2.390278 

[8/8] -2.392214 
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TABLE 5.2 Roots of the Pade´ approximants monopole (Noor and Mohyud-Din [36], 

Wazwaz [48])       2  , =nα  

Degree Roots 

[2/2] -2.0 

[4/4] -2.0 

[6/6] -2.0 

[8/8] -2.0 

 

TABLE 5.3 Roots of the Pade´ approximants monopole (Noor and Mohyud-Din [36], 

Wazwaz [48])       3  , =nα  

Degree Roots 

[2/2] 0.0 

[4/4] -2.197575908 

[6/6] -1.1918424398 

[8/8] -1.848997181 

 

    TABLE 5.4 Roots of the Pade´ approximants [8/8] monopole α  for several values 

of n (Noor and Mohyud-Din [36], Wazwaz [48])       

n [8/8] Roots n [8/8] Roots 

1 -2.392213866 7 -1.000708285 

2 -2.0 8 -1.000601615 

3 -1.848997181 9 -1.000523005 

4 -1.286025892 10 -1.000462636 

5 -1.001101141 11 -1.000262137 

6 -1.000861533 ∞→n  -1.0 

 

   Table 5.4 shows that the roots of the monopole α  converge to -1 as n increases. 

Now applying the modified version 4.2 (VIMAP) on (10, 11) and applying the same 

transformation, we get the following iterative scheme 

,)(
0 0

1 dsA
x

u
xu

x

n

n
n

n ∫ ∑ 









−

∂

∂
−=

∞

=
+        (15) 

where nA  are the so-called Adomian’s polynomials and can be generated for all types of 

nonlinearities according to the algorithms developed in (Wazwaz [47, 48]). First few 

Adomian’s polynomials are as follows 
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Employing these polynomials coupled with the iterative scheme (15) and using the 

inverse transformation, we obtained the series solution which is in full agreement with 

(14) where the same problem has been solved by using the modified version 4.1 

(VIMHP).  

 

REMARK 5.1: It is observed that the solution based upon He’s polynomials (VIMHP) 

is much easier to calculate as compare to the modified version 4.2 (VIMAP) where 

Adomian’s polynomials coupled with their complexities have been applied. 

 

6. CONCLUSION 

In this paper, we applied and compared two modified versions of variational iteration 

method (VIM) Flierl-Petviashivili (FP) equation by converting the Flierl-Petviashivili 

equation to a first order initial value problem. The proposed methods are applied to the 

reformulated first-order initial value problem which gives the solution in terms of 

transformed variable. The desired series of solutions are obtained by making use of 

inverse transformation. The difficulty in this type of equation, due to the existence of 

singular point at x = 0, is overcome here. To make the work more concise and for the 

better understanding of the solution behavior the Pade´ approximants were employed. It 

is concluded that the solution based upon He’s polynomials (VIMHP) is much easier to 

calculate as compare to the modified version 4.2 (VIMAP) where Adomian’s 

polynomials coupled with their complexities have been applied. 
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