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Abstract- In this paper, an efficient decomposition method is constructed and used for 
solving system of nonlinear equations. The method based on the decomposition 
technique of Noor [M.A.Noor, K.I.Noor, Some iterative schemes for nonlinear 
equations, Appl. Math. Comput. 183(2006), 774-779]. This technique is revised to solve 
the system of nonlinear equations. Some illustrative examples have been presented, to 
demonstrate the proposed method and the results are compared with those derived from 
the previous methods. All test problems reveals the accuracy and fast convergence of 
the suggested method. 
 
Keywords-Decomposition method, Iterative methods, System of nonlinear equations. 
 

1. INTRODUCTION 

  
 Recently, several iterative methods have been made on the development for 
solving nonlinear equations and system of nonlinear equations. These methods have 
been improved using Taylor interpolating polynomials, quadrature formulas, homotopy 
perturbation method and decomposition techniques [1-14]. Chun [3] by improving 
Newton method has presented a new iterative method to solve nonlinear equations. His 
work is based on modification of the Abbasbandy’s study [1]. Their methods have 
contained higher order differential derivatives displaying a serious drawback. To 
overcome this difficulty, Noor et al. [12] have considered an alternative decomposition 
technique which does not involve the derivative of the Adomian polynomial. 
Furthermore, Darvishi et al.[4,5] by using Adomian decomposition constructed new 
methods and Golbabai et al.[7] have applied the homotopy perturbation method to build 
a new family of Newton-like iterative methods for solving system of nonlinear 
equations. 
 In this paper, a new iterative method was constructed by using the Noor’s 
decomposition technique [12,13]. This technique, however, needs to be revised to solve 
the system of nonlinear equations. Some illustrative examples have been presented, to 
demonstrate our method and the results are compared with those derived from the 
previous methods. All test problems reveals the accuracy and fast convergence of the 
new method. 
 

2. ITERATIVE METHOD 

 
 Consider the system of nonlinear equations of the form 
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where RR:g,f →→→→2  and 22: RR →→→→F .  Suppose that ][ ,σµ====++++x  is a root of (1) and [[[[ ]]]]Tγλ ,====u  

is an initial estimation sufficiently close to ++++x . Using Taylor’s series around u  for (1), 
we have 
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where ⊗  is the Kronecker product and ie  is a 2x1 vector of zero except for a 1 in 

position i . 
 
 We can rewrite (3) as 

)N(xcx ++++==== ,                                                                    (4) 

where 
(((( )))) (((( ))))uFuJuc

1−−−−−−−−==== ,                                                              (5) 
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and 
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 To satisfy that ( )xN is nonlinear and vector form, the following decomposition 
method constructed by Noor & Noor [12] was used in the vector form 
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 The nonlinear operator )N(x can be decomposed as 
 

(((( )))) ∑∑∑∑ ∑∑∑∑∑∑∑∑
∞∞∞∞

==== ====

∞∞∞∞

==== 
























++++====














1i

i

0j

jo

0i

i NNN xxx .                                              (9) 

 

Combining (4), (8), and (9), the iterative scheme can be obtained as 
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 Then 
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 From (5), (6), (8), and (10), it follows  
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 Joining (8), (10), and (13), 
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is obtained. This gives us Newton’s method for solving the nonlinear system ( ) 0xF =  as 
computing the approximate solution 1n+x  for a given ox , by the iterative scheme 
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 Using (8), (10), and (14), we obtain  
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 This formulation produces the following iterative methods for solving system of 
nonlinear equation (1).  
 

Algorithm 2.1. For a given 
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The above algorithm was defined by Golbabai and Javidi [7] using the homotopy 
perturbation method. It has been shown that the Noor and Noor decomposition is very 
simple and easier than the homotopy perturbation and Adomian decomposition methods 
for solving the nonlinear systems. 
  
 Now, Algorithm 2.1 can be improved by using (6) and (10) as following: 
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Substituting the equations (13), (14), and (15) into (8), we can obtain 
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 This formulation allows us to propose the following iterative method for solving 
system of nonlinear equation (1). 
 
Algorithm 2.2. For a given ox , compute the approximate solution 1n+x  by the iterative 

schemes 
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3. APPLICATIONS 
 
In this section, two examples are presented to illustrate the efficiency of the method 
developed in this study. By applying Algorithm 2.2(A2.2), the results are compared 
with standard Adomian decomposition method (SADM), revised Adomian 
decomposition method (RADM) [6], the algorithms A1 and A2 obtained by using the 
homotopy perturbation method by Golbabai and Javidi in [7], and Newton-Raphson 
method(N-R). The computational results for two examples are presented in Table 1 and 
Table 2. These examples exhibit the accuracy and convergence of the developed 
method, numerically.   
  
Example 1: Consider the following system of nonlinear equations [7,10] using initial 
approximation [[[[ ]]]]To 8080 .,.====x : 

0.810yxxy

08yx10 x
2

22

====++++−−−−++++

====++++++++−−−− ,                                                 (17) 

The exact solution of the problem is (1,1) .  

 

Example 2: Consider the other system of nonlinear equations [7] : 

0.2yx

0,yx1y x
22

2

====−−−−++++

====−−−−++++−−−−                                                   (18) 

We solve this system by (16) using initial approximation [[[[ ]]]]To 5050 .,.====x . The exact 

solution of this problem is also (1,1) .  

 
Table 1: Numerical results showing example1 with 80xo .=  and 80yo .=  

Method Number  of 
Iterations 

x,y Obtained solution 

A 2.2 2 x 
y 

1.00003866167173 
1.00004979886010 

A 2.2 3 x 
y 

1.00000000027180 
1.00000000076022 

SADM 5 x 
y 

0.99607593000000 
0.99556077000000 

RADM 5 x 
y 

0.99778000000000 
0.99785300000000 
 

A1 2 x 
y 

0.99994464092480 
0.99992464311298 
 

A1 3 x 
y 

0.99999999884257 
0.99999999823479 
 

N-R 2 x 
y 

0.99992606251646 
0.99990539102108 
 

N-R 3 x 
y 

0.99999999731318 
0.99999999646110 
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Table 2: Numerical results showing example 2 with 50x o .=  and 50yo .=  

Method Number  of 
Iterations 

x,y Obtained solution 

A 2.2 3 x 
y 

0.95850974858149 
0.99220393210356 

A 2.2 4 x 
y 

0.99916931633484 
0.99987041741491 

A2 2 x 
y 

0.90503300648706 
0.96134766510584 

A2 3 x 
y 

0.99975332008120 
1.00191363624924 
 

N-R 2 x 
y 

1.06935578416718 
0.98691638090214 
 

N-R 3 x 
y 

1.00084842985638 
1.00160442120459 

 

 

4. CONCLUSION 

 

 A new iterative method is constructed and applied to solving the system of 
nonlinear equations. The suggested method is shown to be more convergent than the 
Adomian decomposition, revised Adomian decomposition methods [6], and Newton-
Raphson method and is useful and effective as the homotopy perturbation method [7]. 
Finally, our proposed method can be used as an alternative method for solving system 
of nonlinear equations, and in engineering problems related to nonlinear systems. 
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