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Abstract- In this paper, a new approximate method for solving higher-order linear 
ordinary differential equations with variable coefficients under the mixed conditions is 
presented. The method is based on the rational Chebyshev (RC) Tau, Chebyshev and 
Taylor collocation methods. The solution is obtained in terms of rational Chebyshev 
(RC) functions. Also, illustrative examples are given to demonstrate the validity and 
applicability of the method.  
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1. INTRODUCTION 

 

Many problems arising in science and engineering are formulated in bounded 
and unbounded domains. Recently a number of different methods associated with 
orthogonal systems for solving higher-order differential equations, which are the 
Hermite spectral method [1,2], the Laguerre method [3,4], the Jacoby polynomials 
method [5], the methods based on rational Chebhshev (RC) functions [6,7], the 
Laguerre tau method [8] and the rational Chebyshev tau method [9], have been studied. 
 

On the other hand, Chebyshev and Taylor (matrix and collocation) methods for 
the approximate solution of high-order differential and difference equations have been 
presented in many paper by Sezer et.al. [10-16]. 
 

In this paper, the Chebyshev tau [9], the Taylor collocation [14,15] methods are 

developed and applied to the thm -order linear nonhomogenous differential equation 
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and the solution is expressed in terms of the rational Chebyshev functions [9] as 
follows: 
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here )(xPk  and )(xg  are continuous functions on na;),0[ ∞ , Nn ,...,1,0=  are the 

coefficients to be determined; )(xRn , Nn ,...,1,0=  is the rational Chebyshev 

functions; j

k

ij cc ,  and iλ  are appropriate constants. 

 
2. PROPERTIES OF THE RATIONAL CHEBYSHEV (RC) FUNCTIONS [9] 

 

In cases when errors near the ends of an interval ],[ ba  are particular importance, 

a weighting function which is the form ))((/1 xbax −−  is often useful. It is supposed 

again that a linear change in variables has tranformed the given interval into the interval 

]1,1[− , so that the weighting function becomes 21/1)( xxw −= . In other words a great 

variety of other types of least-square polynomial approximation can be formulated in 
terms of other weighting functions. In particular, for the weighting function 

βα )1()1()( xxxw +−= , )1,1( −>−> βα  over ]1,1[− , which reduces to Legendre case 

when 0== βα  and to the  Chebyshev  case when .2/1−== βα  The well-known 

Chebyshev polynomials are orthogonal in the interval ]1,1[−  with respect to the weight 

function 21/1)( xxw −=  and can be determined with the aid of the recurrence 

formulae 
                                       .1,)()(2)(,)(,1)( 1110 ≥−=== −+ nxTxxTxTxxTxT nnn  

The RC functions are defined by 
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These functions are orthogonal with respect to the weight function 

))1/((1)( xxxw +=  in the interval ),0[ ∞ . 
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3. FUNDAMENTAL MATRIX RELATIONS 

 

Let us first assume that the solution of Eq.(1) can be expressed in the form (3), 
which is a truncated Chebyshev series in terms of RC functions. Then )(xy  and its 

derivative )()( xy k  can be put in the matrix forms 

 
                                                         AR][ )()( xxy = ,                                                    (5) 

and  

,...,,2,1,0,)()( )()( Nmkxxy kk ≤== AR][  

so that 

,)(...)()()( )()(

1

)(

0
)(

][R xRxRxRx
k

N

kkk =  
T

Naaa ][A ...10=  

where )(...,),(),(;)()(,)()( 10
)0()0( xRxRxRxxxyxy NRR ≡≡  are the RC functions 

defined in Eq.(4); Naaa ...,,, 10  are coefficients defined  in Eq.(3).          

If we use the expression 
1

1
)(

+
−

=
x

x
xv  in the RC function (4), then the matrix 

)(xR  becomes 

 

                                           )()( xx TT CVR =  or  Txx CVR )()( =                                 (6) 
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In this case, we are going to use the last row for odd values of N , and othervise 
previous one as the last row of matrix. 
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For example, in the cases 3=N  and 4=N , the matrix C  becomes 
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Consequently, the  thk  derivative of the matrix  )(xR defined in (5), from Eq (6), can be 

obtained as  
Tkk xx CVR )()( )()( =  

and thereby, from the expression (5)  
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4. MATRIX RELATION BASED ON COLLOCATION POINTS 

 

Now, let us define the collocation points as 

                                          ,...,,2,1,0, Nrr
N

c
xr ==                       (8) 

so that .;0 +∈∞<≤≤ IRccxr  

Then we substitute the collocation points (8) into Eq.(1) to obtain the system 
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By putting the collocation points Nrxr ...,,2,1,0, =   in the relation (7) we have the 

matrix system 
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Consequently, from the matrix forms (10) and (11), we obtain the fundamental matrix 
equation for Eq.(1) as  
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Next, we can obtain the corresponding matrix forms for the conditions (2) as follows: 
Using the relation (7) for jcx = , we have the fundemental matrix equation 

corresponding to the mixed conditions (2): 
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5. METHOD OF SOLUTION 

 
The fundamental matrix equation (12) for  Eq.(1) corresponds to a system of 

)1( +N  algebraic equations for the )1( +N  unknown coefficients ....,,, 1 No aaa   

Briefly we can write Eq.(12) as 
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To obtain the solution of Eq.(1) under the conditions (2), by replacing the rows of 
matrices (15) by the last m rows of the matrix (14), we have the required augmented 
matrix 
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If  rank =W
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Thus the coefficients na  ; Nn ...,,1,0=   are uniquely determined by Eq.(16). 

 
Also we can easily check the accuracy of the obtained  solutions as follows [13,15]: 
Since the obtained rational Chebyshev function expansion is an approximate solution of 
Eq.(1), the resulting equation must be satisfied approximately; that is, for 
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−≤ 10)(    ( ik  is any positive integer). 

If max kki −− = 10)10(  ( k  is any positive integer) is prescribed, then the truncation limit 

N  is increased until the difference )( ixE  at each of the points ix  becomes smaller than 

the prescribed k−10 . 
 

6. ILLUSTRATIVE EXAMPLE 

 

In this section, several numerical examples are given to illustrate the accuracy 
and effectiveness of properties of the method. All of them were performed on the 
computer using a program written in MATHEMATICA 5.2. The absolute errors in 

Tables are the values of )()( xyxy N−  at selected points. 

 
Example 1.([9], Example 1) Let us consider the following two point boundary value 

problem 
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The augmented matrix forms of the conditions for 4=N  are 
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We obtain the solution 
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which is exact solution of  two-point boundary value problem [9]. 
 
Example 2.([9], Example 2) Consider the differential equation  
 
                                          0)(2)( =′+′′ xyxxy , )1,0[∈x                                              (19) 
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We applied the RC collocation method and solved this problem. In Table 1, the 
resulting values for 4=N  and 8=N  using the present method together with the 

rationalized Haar and  RC Tau method with 8=N  and also the exact values of )(xy i.e 

                                                       ∫ −=
x

dttxy
0

2 )exp(
2

)(
π

 

are tabulated. The present method is also very effective and convenient. The errors in 
numerical solution of Example 2 are seen in Figure 1. The error decreases when the 
integer N is increased. 
 

                           Table 1. Approximates and exact values  for Example 2 

 
 

 

                 

 

 

 

 

 

 

 

                 
                     
                                 Figure 1. Exact and other method solutions of the Example 2 

 
 

 

x 

 
Exact   

Solution 

 
Rationalized 

Haar(N=8) 

 
  Chebyshev 
Tau Met(N=8) 

 
  Present 
Method(N=4) 

 
Present 

Method(N=8) 

0.0 0.0000000 0.00000 0.0000000 0.0000000 0.0000000 

0.1 0.1124629 0.11244 0.1124630 0.1159364 0.1124629 

0.2 0.2227025 0.22268 0.2227026 0.2313501 0.2227025 

0.3 0.3286267 0.32861 0.3286269 0.3428859 0.3286267 

0.4 0.4283923 0.42837 0.4283925 0.4476373 0.4283923 

0.5 0.5204998 0.52047 0.5204998 0.5439239 0.5205003 

0.5 0.6038560 0.60384 0.6038561 0.6310895 0.6038590 

0.7 0.6778011 0.67779 0.6778012 0.7091601 0.6778169 

0.8 0.7421009 0.74208 0.7421011 0.7785628 0.7421682 

0.9 0.7969082 0.79689 0.7969085 0.8399335 0.7971486 
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Example 3.([17],p.153) Consider the first order linear initial value problem                    
                                                        
                                    ]1,0[,0)0(,1)()()1( ∈==+′+ xyxyxyx                               (20) 

 
Following the procedures in the previous examples, we obtain the augmented matrix in 
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This system has the solution 
T
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
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= 000
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1
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Therefore,  we find the  solution 

                                                     )(
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2

1
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1
)(
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=

x

x
xy  

which is the exact solution of Example 3. 

 

Example 4. Our simple example is the linear initial value problem as follows  
 

             xxyxxxyx −=+++′+ 1)()1()()1( 2 , 1)1(
4

3
)0( =− yy , 10 ≤≤ x                   (21) 

Using (17) to determine the individual terms of the RC collocation  method, we find 

.0826180758.0

,138068253.0,7977329645.0,306641207.2,1864452793.0

4

3210

−=

−=−=−=−=

a

aaaa

  
Using (3) leads immediately  to the solution of  problem given by 
 

     )(xy =-0.1864452793 )(0 xR -2.306641207 )(1 xR R1-0.7977329645 )(2 xR -

0.138068253 )(3 xR -0.0826180758 )(4 xR  
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This expansion is approximate solution , that is, the first five terms of  the Taylor series 

expansions of the Chebyshev solution  given by Fox and Parker [17,p.137 ].  In Figure 

2,  the results obtained by our method are compared with the results of Fox and Parker 

[17,p.137]. The present method is also very effective and convenient. The errors in 

numerical solution of Example 4 are seen in Figure 3. 

 
                                      Figure 2. Numerical and Fox-Parker solution of the Example 4 

                      
 
                                                  Figure 3.  Error analysis for Example 4  

 
 

7. CONCLUSION 

 

The rational Chebyshev collocation method based on the rational Chebyshev 
Tau and Chebyshev-Taylor collocation methods are used to solve the higher-order 
ordinary differential equations numerically. A considerable advantage of the method is 
that the rational Chebyshev coefficients of the solution are found very easily by using 
computer programs. For this reason, this process is much faster than the other methods. 
In addition, an interesting feature of this method is to find the analytical solutions if the 
equation has an exact solution that is a  rational functions. Illustrative examples with the 
satisfactory results are used to demonstrate the application of this method. 
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The method can also be extended to the system of linear differential equations 
with variable coefficients, but some modifications are required. 
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