

Mathematical and Computational Applications, Vol. 14, No. 3, pp. 177-186, 2009.

© Association for Scientific Research

CSLS: CONNECTIONIST SYMBOLIC LEARNING SYSTEM

Mehmet Sabih Aksoy
1
 and Hassan Mathkour

2

1
Department of Information Systems
2
Department of Computer Science

King Saud University

Riyadh 11543, Saudi Arabia
email: msaksoy@ksu.edu.sa

Abstract- This paper presents CSLS, a symbiotic combination of inductive and neural

learning. CSLS has two components, an induction algorithm to carry out inductive

learning and a multi-layer perceptron (MLP) to implement neural learning. The paper

outlines the operation of the components of CSLS and describes how the combined

system is designed to utilise the individual strengths of inductive and neural learning to

the best advantage. The paper gives the results of evaluating CSLS on the IRIS data and

Breast-Cancer-Wisconsin-data classification problems. These clearly demonstrate the

main benefit of the symbiotic combination: the combined system performs better than

either of its components.

Keywords- Inductive learning; neural networks; symbiotic systems.

1. INTRODUCTION

 Two important branches of machine learning are inductive learning and neural

learning [1,2,3]. Both kinds of learning can be supervised or unsupervised and involve

generalizing from a set of specific examples. In supervised learning, each example

consists of an object, represented by its attributes or features, and the class to which the

object belongs. An induction algorithm or a neural network extracts explicit or implicit

rules for correctly classifying the objects in the example set. In unsupervised learning,

each example only comprises object attributes; the correct object class is unknown. The

induction algorithm or neural network learns to cluster the example objects into groups

according to some measure of the similarity between their attributes.

 A number of induction algorithms and neural network models have been proposed.

Well-known induction algorithms include ID3 [4] C4.5 [5] and AQ [6, 7]. Some of the

popular neural network types are the multi-layer perceptron [8], the learning vector

quantisation network [9] and ART2 [10].

 Existing induction algorithms and neural networks have both strengths and

weaknesses. The paper explores the idea of combining an induction algorithm and a

neural network to exploit the advantages of these two types of learning tools.

 The paper comprises two main sections. Section 2 examines the contrasting

features of inductive and neural learning and the general benefits of a combined

inductive and neural learning system. Section 3 outlines the two components of the

M. S. Aksoy and H. Mathkour

178

proposed combined system, describes how it operates and presents the results of

evaluating it on standard classification tasks.

2. BENEFITS OF A COMBINED INDUCTIVE AND NEURAL LEARNING

 The followings are the contrasting features of inductive and neural learning:

• Inductive learning does not suffer from the non-convergence problem which

sometimes occurs with neural learning. An induction algorithm can always extract rules

from a training set and is much faster than a neural network to learn from the same data

set(s).

• Inductive learning is normally easier to implement than neural learning. Induction

algorithms do not have internal parameters that require setting, unlike neural networks

for which parameters to be chosen include the number of neurons, the number of neuron

layers, the neighborhood size, the learning rate, and the vigilance threshold. The

problem is that, often, there is not a systematic procedure for selecting those parameters.

• Inductive learning basically involves learning symbolic information. On the other

hand, neural learning requires numerical data.

• Inductive learning results in transparent and interpretable rules. Neural learning tends

to produce a black box with implicit input-output characteristics.

• Neural learning is generally more robust than inductive learning when the training

data is noisy [11]. Also, neural networks are not as sensitive to the exact order of

presentation of the training data as are most inductive algorithms.

• Neural learning is often better at generalizing than inductive learning. Invariably,

inputs can be found that are not recognizable or classifiable by a rule set obtained by

induction even though those inputs may only be slightly different from inputs that are

classifiable. However, a neural network can always produce outputs to any given inputs

[12].

• From the above discussion, combining inductive learning with neural learning

can result in a system having the strengths of both neural networks and induction

algorithms and therefore a better performance than either of them individually.

3. CSLS: CONNECTIONIST SYMBOLIC LEARNING SYSTEM

The proposed combined system for inductive and neural learning (CSLS) comprises two

parts. The first part is RULES-EXT [13]. The second part is a multi-layer perceptron,

which is perhaps one of the most simple, reliable and commonly used types of neural

network. For completeness and ease of reference, a summary of the main features of

RULES-EXT and the multi-layer perceptron is given below, prior to the description of

the combined system.

3.1. RULES-EXT

 RULES-EXT [13] is a simple algorithm for extracting a set of classification rules

from a collection of examples for objects belonging to one of a number of predefined

classes. RULES-EXT is an improved version of RULES3 algorithm [14]. The extra

features that RULES-EXT has over RULES3 are: (1) The number of required files to

extract a knowledge base (a set of rules) is reduced to 2 from 3. RULES3 a file for the

CSLS: Connectionist Symbolic Learning System

179

set of examples, a file for attributes names and a file for classes names. RULES-EXT

establish the classes file from the set of examples automatically. (2) The repeated

examples are eliminated, (3) The users are able to change the order of attributes (4) The

system is able to fire rule(s) partially if any of the extracted rules cannot fully be

satisfied by an unseen example.

 RULES-EXT uses the same rule forming procedure of RULES3 algorithm. An

object must be described in terms of a fixed set of attributes, each with its own range of

possible values which could be nominal or numerical.

 An attribute-value pair constitutes a condition in a rule. If the number of attributes

is Na , a rule may contain between one and Na conditions. Only conjunction of

conditions is allowed in a rule. The attributes must all be different if the rule comprises

more than one condition.

 RULES-EXT extracts rules by considering one example at a time. It forms an array

consisting of all attribute-value pairs associated with the object in that example, the total

number of elements in the array being equal to the number of attributes of the object.

The rule forming procedure may require at most Na iterations per example. In the first

iteration, rules may be extracted with one element from the array. Each element is

examined in turn to see if, for the complete set of examples, it appears only in objects

belonging to a unique class. If so, a candidate rule is obtained with that element as the

condition. In either case, the next element is taken and the examination repeated until all

elements in the array have been considered. If no rules have been formed, the second

iteration begins with two elements of the array to be examined at a time. Rules formed

in the second iteration therefore have two conditions. The procedure continues until an

iteration when one or more candidate rules can be extracted or the maximum number of

iterations for the example is reached. In the latter case, the example itself is adopted as

the rule. If more than one candidate rule is formed for an example, the rule that

classifies the highest number of examples, is selected and used to classify objects in the

collection of examples. Examples of which objects are classified by the selected rule are

removed from the collection. The next example remaining in the collection is then taken

and rule extraction is carried out for that example. This procedure continues until there

are no examples left in the collection and all objects have been classified. Figure 1

summarizes the steps involved in RULES-EXT.

M. S. Aksoy and H. Mathkour

180

Step 1. Eliminate (if there are any) repeated examples

Step 2. Find out all classes contained in the set of examples

Step 3. Define ranges for the attributes which have numerical values and assign labels to them

Step 4. Set the minimum number of conditions (Ncmin) for each rule

Step 5. Take an unclassified example

Step 6. Nc = Ncmin -1

Step 7. If Nc < Na then Nc = Nc+1

Step 8. Take all values or labels contained in the example

Step 9. Form objects which are combinations of Nc values or labels obtained in Step 8

Step 10. If at least one of the objects belongs to a unique class then form rules with them;

 ELSE go to Step 7

Step 11. Select the rule which classifies the highest number of examples

Step 12. Remove examples classified by the selected rule

Step 13. If there are no more unclassified examples then STOP; ELSE go to Step 5

Figure 1. Induction procedure in RULES-EXT

 (Nc= number of conditions, Na= number of attributes)

3.2. Multi-Layer Perceptron

 The multi-layer perceptron (MLP) is based on the perceptron, the oldest type of

artificial neural network. An MLP normally consists of an input layer, an output layer

and one or more hidden layers of neurons. Signals propagate in one direction from the

input layer through the hidden layers to the output layer. Consequently the network is

known as a feedforward network.

 The neurons in an MLP usually have non-linear output activation (i.e. a non-linear

transfer function). This enables an MLP to perform complex mappings which could not

be achieved by the original single-layer perceptron.

 MLPs are generally trained to carry out a particular mapping by applying the

backpropagation supervised learning algorithm. Errors, or differences between the

actual output of the network and the desired output corresponding to some training

input, are propagated backwards from the output layer towards the input layer to

determine the necessary adjustments to the weights of the connections between neurons

in the network. The adjustments are made by following the error gradient. The aim of

the training is to find the set of weights yielding the smallest error.

 Training is controlled by a learning rate (η) and momentum constant (α), both in

the range 0 to 1. The learning rate affects the amount of weight modification in response

to a training input. Large values of η cause learning instability and conversely too small

a value of η slows the learning process unacceptably. In some cases it might be useful

to start with a large η and then reduce it to achieve a gradual convergence to the global

minimum. The momentum constant α acts to smooth the weight modifications. In

general, a high value of α can speed up the training [15, 16].

3.3. The Combined System: CSLS
 CSLS (Connectionist Symbolic Learning System) is an improved version of

COSINE (A Combined System for Inductive and Neural Learning) [17]. It employes

RULES-EXT instead of RULES3 for induction part.

CSLS: Connectionist Symbolic Learning System

181

Figure 2. The Operation of CSLS

Before CSLS can be employed, the multi-layer perceptron requires configuring. That is,

the number of input and output neurons, the number of hidden layers, and the number of

neurons in the hidden layers have to be decided. For a given problem, the number of

input neurons is taken as the number of attributes and the number of output neurons, the

number of classes. Each attribute is assigned to an input neuron and a class, to an output

neuron. For simplicity, the number of hidden layers is fixed at 1, since it has been

demonstrated that one hidden layer is sufficient for an MLP to carry out arbitrarily

complex mappings [18]. The number of hidden neurons is made approximately equal to

twice the number of input neurons, as it has been found empirically that this would yield

a good performance. The hidden neurons have sigmoidal activation functions. The input

and output neurons have linear activation functions. The training parameters (learning

rate, momentum constant and maximum number of iterations) of the MLP also need

setting. The training data has first to be converted into suitable formats. Numerical

attributes are automatically divided into equal intervals which are given symbolic labels

Set of examples

Revised set of examples for

Induction Algorithm

Revised set of examples for

Neural Network

Training by

RULES-EXT
Training by Neural Network

Set of Rules Trained Neural Network

Unseen example(s)

Decision by RULES Decision by Neural Network

Final Decision by CSLS

M. S. Aksoy and H. Mathkour

182

for RULES-EXT to handle. Nominal attributes are assigned numerical values before

being input to the MLP. Classes corresponding to particular input attributes are

converted into binary numbers which are set as the desired outputs of the MLP. In

addition to the training data, a selection of test data is retained to evaluate the

generalization ability of RULES-EXT and the MLP after they have been trained on a

given problem. The generalization ability is defined as the percentage of correct

classifications made over the total number of test data.

 When an unseen input is presented to CSLS, five situations can occur:

I. The MLP and RULES-EXT have the same output. In this case, that output is taken

as the output of CSLS.

II. The MLP has a valid output but RULES-EXT does not have a valid output. In this

situation, the output of CSLS is equated to that of the MLP.

III. The MLP does not have a valid output and the input matches one of the rules

induced by RULES-EXT. The output of RULES-EXT is then adopted as that of

CSLS.

IV. The MLP and RULES-EXT give different outputs. The output of CSLS in this

situation is that of the component with the highest generalization ability as

determined using the test set.

V. The MLP does not have a valid output and the input is not classifiable by RULES-

EXT. In this case, the input is added to the training set to update the weights of the

MLP and to extract new rules for RULES-EXT.

 CSLS has the ability to improve one of its components using the other component.

For example, if RULES-EXT cannot have a valid output but the MLP can produce a

valid output corresponding to the same input, then this input-output pair is employed as

a new example to train RULES-EXT. On the other hand, if the MLP does not have a

valid output when presented with a new input which, in contrast, RULES-EXT is able to

classify, then the outcome of RULES-EXT is set aside to train the MLP. The Operation

of CSLS is shown in Figure 2.

4. EVALUATION RESULTS

 The system was evaluated on the IRIS data and Breast-Cancer-Wisconsin-data

classification problems that are explained in the following three sections.

4.1. The IRIS data Problem

 The data was employed by Fisher [19] to derive the linear discriminant function and

is still the standard discriminant analysis example used for testing most current

statistical pattern classification algorithms [20,21]. The data set contains 150 examples

belonging to one of three classes named Iris-Setosa, Iris-Versicolor and Iris-Virginica.

Each item in the data set has four attributes, Sepal-Length, Sepal-Width, Petal-Length

and Petal-Width. The data contains 150 examples. 59 examples were randomly chosen

for training and 91 for testing CSLS. The number of quantisation levels were set to 11

for all examples for RULES-EXT. The minimum number of conditions for each rule

was set to 2 and the number of rules to be extracted for each example was set to

CSLS: Connectionist Symbolic Learning System

183

maximum. The main features of the training case for RULES-EXT are summarized in

Table 1.

Table 1. The Main Features of Training of IRIS data and

 Breast-Cancer-Wisconsin-data for RULES-EXT

 attributes classes quantization

Levels

training

examples

extracted

rules

selected

Rules

IRIS 4 3 11 59 115 20

Breast

Cancer

10

2

6

200

30

30

The same data set has been used to train MLP as well. The main features of training

IRIS data for MLP is given in Table 2.

Table 2. The Main Features of Training of IRIS data and

 Breast-Cancer-Wisconsin-data for MLP

 Number of

 inputs outputs hidden

layers

hidden

nodes

learning

Rate

momentum

constant

iterations training

examples

IRIS 4 3 1 9 0.4 0.8 300000 59

Breast

Cancer

10

2

1

11

0.4

0.8

100000

200

4.2. The Breast-Cancer-Wisconsin-data Problem

 Samples arrive periodically as Dr. Wolberg reports his clinical cases [21]. The

database therefore reflects this chronological grouping of the data. The data contains 10

attributes namely: 1. Sample code number, 2. Clump Thickness, 3. Uniformity of Cell

Size, 4. Uniformity of Cell Shape, 5. Marginal Adhesion, 6. Single Epithelial Cell Size,

7. Bare Nuclei, 8. Bland Chromatin, 9. Normal Nucleoli, and 10. Mitoses. The values

for all attributes except Sample code number is an integer number from 1 to 10. The

class is 2 for benign and 4 for malignant.

 The data contains 698 examples. 200 were randomly chosen for training and 498

for test.

 The main features of the training case for RULES-EXT are summarized in Table 1,

and for MLP in Table 2 respectively.

4.3. Performance of CSLS for IRIS Data and Breast-Cancer-Wisconsin Data

 The CSLS was tested for the two example problems and the results are given in

Table 3 and Table 4 respectively. For IRIS data problem 91 and for Breast-Cancer-

Wisconsin data problem 498 randomly chosen test examples have been used to evaluate

the performance of the system. For IRIS data, the MLP correctly classified 84 examples

out of 91, the RULES-EXT correctly classified 80 examples out of 91. The CSLS

correctly classified 86 examples out of 91. As it can be seen from Table 3, the

M. S. Aksoy and H. Mathkour

184

performance of CSLS is better than the performance of its two components. The reason

is that, the unclassified examples by MLP and RULES-EXT are different examples. The

CSLS could classify some of these examples and that is why its performance is better.

Table 3. Performances of the MLP, RULES-EXT and CSLS for IRIS data.

 MLP RULES-EXT CSLS

Number of test examples 91 91 91

Number of correctly classified examples 84 80 86

Number of misclassified examples 7 11 5

Performance 92% 88% 95%

 The performance of CSLS for Breast-Cancer-Wisconsin data is also much better than its

components. As it can be seen in Table 4, the CSLS was unable to correctly classify 17

examples out of 498. The number of unclassified examples by MLP is 39 and by RULES-EXT

is 46. The performance of the system was 97% while the performance of MLP was 92% and the

performance of RULES-EXT was 91%. The reason for the performance of RULES-EXT being

less than the performance of MLP is that, the data sets for both cases contain totally numerical

attributes.

Table 4. Performances of the MLP, RULES-EXT and CSLS for Breast-Cancer-Wisconsin data.

 MLP RULES-EXT CSLS

Number of test examples 498 498 498

Number of correctly classified examples 459 452 481

Number of missclassified examples 39 46 17

Performance 92% 91% 97%

4. CONCLUSION

 CSLS is a symbiotic combination of inductive and neural learning. It possesses the

strengths of these individual forms of learning: a guaranteed ability to learn, an equal

aptitude for handling symbols and numerical data, a high degree of robustness and a

good capacity for generalization. The symbiotic nature of CSLS is evident both in its

adoption of the best output of its components as the overall system output and in its use

of one component to improve the other when appropriate. This has resulted in CSLS

having a better performance than either of its components as demonstrated in the IRIS

data and Breast-Cancer-Wisconsin data classification problems.

ACKNOWLEDGEMENT

 The authors would like to thank Research Center in the College of Computer and

Information Sciences in King Saud University for their support and fund provided to

complete this work. We also would like to thank to UCI Machine Learning Repository

for providing the data sets used to train and test the system [21].

CSLS: Connectionist Symbolic Learning System

185

5. REFERENCES

1. D.W. Aha, D. Kibler, and M.K. Albert, Instance-based learning algorithms, in

Machine Learning, 6, Ed: J.R. Quinlan, Kluwer Academic Publishers, Boston,

pp.37-66,1991.

2. T. Samad, Towards connectionist rule-based systems, in Proc. IEEE Int. Joint

Conf. on Neural Networks, Vol 2, June 24-27, pp.525-532, 1988.

3. D. Fisher, K. McKusick, R. Mooney, J.W. Shavlik, and G. Towell, Processing

issues in comparisons of symbolic and connectionist learning systems, in Proc.

Sixth Int. Workshop on Machine Learning, Cornell Univ., Ithaca, New York,

pp.169-173,1989.

4. J.R. Quinlan, Learning efficient classification procedures and their applications to

chess end games, in Machine Learning, An Artificial Intelligence Approach, Eds:

R.S. Michalski, J.G. Carbonell and T.M. Mitchell, Tiago, Palo Alto, CA:, pp.463-

482, 1983.

5. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,

San Mateo, California ISBN 1-55860-238-0, 1993.

6. R.S. Michalski, and J.B. Larson, Selection of most representative training examples

and incremental generation of VL1 hypothesis: The underlying methodology and

the descriptions of programs ESEL and AQ11, Report No. 867, Department of

Computer Science, University of Illinois, Urbana, Illinois, 1978.

7. G. Cervone, L.A. Panait, and R.S. Michalski, The Development of the AQ20

Learning System and Initial Experiments, Tenth International Symposium on

Intelligent Information Systems, Zakopane, Poland, June, 2001.

8. D.E. Rumelhart, and J.L. McClelland, Parallel distributed processing, Vol 1, MIT

Press, Cambridge, MA, 1986.

9. T. Kohonen, G. Barna and R. Chrisley, Statistical pattern recognition with neural

networks: benchmarking studies, in proc. Int. Joint Conf. on Neural Networks,

Vol1, San Diego, California, pp.61-68, 1988.

10. G.A. Carpenter and S. Grossberg, ART-2: Self-organization of stable category

recognition codes for analog input patterns, Applied Optics, pp.4919-4930, 1987.

11. P.K. Mogili and A.K. Sunol, Machine learning approach to design of complex

distillation columns, in Applications of artificial intelligence in engineering VIII,

Eds: G.Rzevski, J.Pastor and R.A. Adey, Vol 2, Elsevier, pp.755-770, 1993.

12. M. Caudill, Expert networks, in Neural Network PC Tools, A Practical Guide, Eds:

R.C.Eberhart and R.W.Dobbins, Academic Press, New York, pp.189-214, 1990.

13. M.S. Aksoy and H. Mathkour, Developing a General Purpose Shell for Automatic

Knowledge Acquisition, a Research Project funded by King Saud University, CCIS

Research Center, KSA, 2005.

14. D.T. Pham and M.S. Aksoy, A new algorithm for inductive learning, Journal of

Systems Eng., No.5 pp. 115-122, UK, 1993.

15. P.D. Wasserman, Neural computing theory and practice, Van Nostrand Reinhold,

New York, 1989.

16. M. Zeidenberg, Neural network model in artificial intelligence, Ellis Horwood,

West Sussex, UK, 1990.

M. S. Aksoy and H. Mathkour

186

17. M.S. Aksoy, New Algorithms for Machine Learning, PhD Thesis, University of

Wales, College of Cardiff, 1994.

18. K. Funahashi, On the approximate realisation of continuous mappings by neural

networks, Neural Networks, 2, pp.183-192, 1989.

19. R.A. Fisher, The use of multiple measurements in taxonomic problems, Ann. of

Eugenics, 7, 179-188, pp. 466-475, 1936.

20. S. M. Weiss and T. Kapouleas, An empirical comparison of pattern recognition,

neural nets and machine learning classification methods, in Readings in Machine

Learning, Eds: J.W.Shavlik and T.G.Dietterich, Morgan Kaufmann, San Mateo,

CA, pp.177-183, 1990.

21. A. Asuncion and D.J. Newman, UCI Machine Learning Repository

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of

California, School of Information and Computer Science, 2007.

