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Abstract- This paper presents CSLS, a symbiotic combination of inductive and neural 

learning. CSLS has two components, an induction algorithm to carry out inductive 

learning and a multi-layer perceptron (MLP) to implement neural learning. The paper 

outlines the operation of the components of CSLS and describes how the combined 

system is designed to utilise the individual strengths of inductive and neural learning to 

the best advantage. The paper gives the results of evaluating CSLS on the IRIS data and 

Breast-Cancer-Wisconsin-data classification problems. These clearly demonstrate the 

main benefit of the symbiotic combination: the combined system performs better than 

either of its components. 
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1. INTRODUCTION 

 

        Two important branches of machine learning are inductive learning and neural 

learning [1,2,3]. Both kinds of learning can be supervised or unsupervised and involve 

generalizing from a set of specific examples. In supervised learning, each example 

consists of an object, represented by its attributes or features, and the class to which the 

object belongs. An induction algorithm or a neural network extracts explicit or implicit 

rules for correctly classifying the objects in the example set. In unsupervised learning, 

each example only comprises object attributes; the correct object class is unknown. The 

induction algorithm or neural network learns to cluster the example objects into groups 

according to some measure of the similarity between their attributes. 

        A number of induction algorithms and neural network models have been proposed. 

Well-known induction algorithms include ID3 [4] C4.5 [5] and AQ [6, 7]. Some of the 

popular neural network types are the multi-layer perceptron [8], the learning vector 

quantisation network [9] and ART2 [10]. 

        Existing induction algorithms and neural networks have both strengths and 

weaknesses. The paper explores the idea of combining an induction algorithm and a 

neural network to exploit the advantages of these two types of learning tools. 

        The paper comprises two main sections. Section 2 examines the contrasting 

features of inductive and neural learning and the general benefits of a combined 

inductive and neural learning system. Section 3 outlines the two components of the 
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proposed combined system, describes how it operates and presents the results of 

evaluating it on standard classification tasks. 

 

2. BENEFITS OF A COMBINED INDUCTIVE AND NEURAL LEARNING 

 

          The followings are the contrasting features of inductive and neural learning: 

• Inductive learning does not suffer from the non-convergence problem which 

sometimes occurs with neural learning. An induction algorithm can always extract rules 

from a training set and is much faster than a neural network to learn from the same data 

set(s). 

• Inductive learning is normally easier to implement than neural learning. Induction 

algorithms do not have internal parameters that require setting, unlike neural networks 

for which parameters to be chosen include the number of neurons, the number of neuron 

layers, the neighborhood size, the learning rate, and the vigilance threshold. The 

problem is that, often, there is not a systematic procedure for selecting those parameters. 

• Inductive learning basically involves learning symbolic information. On the other 

hand, neural learning requires numerical data.  

• Inductive learning results in transparent and interpretable rules. Neural learning tends 

to produce a black box with implicit input-output characteristics. 

• Neural learning is generally more robust than inductive learning when the training 

data is noisy [11]. Also, neural networks are not as sensitive to the exact order of 

presentation of the training data as are most inductive algorithms. 

• Neural learning is often better at generalizing than inductive learning. Invariably, 

inputs can be found that are not recognizable or classifiable by a rule set obtained by 

induction even though those inputs may only be slightly different from inputs that are 

classifiable. However, a neural network can always produce outputs to any given inputs 

[12]. 

•         From the above discussion, combining inductive learning with neural learning 

can result in a system having the strengths of both neural networks and induction 

algorithms and therefore a better performance than either of them individually.  

3. CSLS: CONNECTIONIST SYMBOLIC LEARNING SYSTEM 

 

The proposed combined system for inductive and neural learning (CSLS) comprises two 

parts. The first part is RULES-EXT [13]. The second part is a multi-layer perceptron, 

which is perhaps one of the most simple, reliable and commonly used types of neural 

network. For completeness and ease of reference, a summary of the main features of 

RULES-EXT and the multi-layer perceptron is given below, prior to the description of 

the combined system. 

 

3.1. RULES-EXT 

       RULES-EXT [13] is a simple algorithm for extracting a set of classification rules 

from a collection of examples for objects belonging to one of a number of predefined 

classes. RULES-EXT is an improved version of RULES3 algorithm [14]. The extra 

features that RULES-EXT has over RULES3 are: (1) The number of required files to 

extract a knowledge base (a set of rules) is reduced to 2 from 3. RULES3 a file for the 
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set of examples, a file for attributes names and a file for classes names. RULES-EXT 

establish the classes file from the set of examples automatically.  (2) The repeated  

examples are eliminated, (3) The users are able to change the order of attributes  (4) The 

system is able to fire rule(s) partially if any of the extracted rules cannot fully be 

satisfied by an unseen example. 

       RULES-EXT uses the same rule forming procedure of RULES3 algorithm. An 

object must be described in terms of a fixed set of attributes, each with its own range of 

possible values which could be nominal or numerical.  

       An attribute-value pair constitutes a condition in a rule. If the number of attributes 

is Na , a rule may contain between one and Na conditions. Only conjunction of 

conditions is allowed in a rule. The attributes must all be different if the rule comprises 

more than one condition. 

       RULES-EXT extracts rules by considering one example at a time. It forms an array 

consisting of all attribute-value pairs associated with the object in that example, the total 

number of elements in the array being equal to the number of attributes of the object. 

The rule forming procedure may require at most Na iterations per example. In the first 

iteration, rules may be extracted with one element from the array. Each element is 

examined in turn to see if, for the complete set of examples, it appears only in objects 

belonging to a unique  class. If so, a candidate rule is obtained with that element as the 

condition. In either case, the next element is taken and the examination repeated until all 

elements in the array have been considered. If no rules have been formed, the second 

iteration begins with two elements of the array to be examined at a time. Rules formed 

in the second iteration therefore have two conditions. The procedure continues until an 

iteration when one or more candidate rules can be extracted or the maximum number of 

iterations for the example is reached. In the latter case, the example itself is adopted as 

the rule. If more than one candidate rule is formed for an example, the rule that 

classifies the highest number of examples, is selected and used to classify objects in the 

collection of examples. Examples of which objects are classified by the selected rule are 

removed from the collection. The next example remaining in the collection is then taken 

and rule extraction is carried out for that example. This procedure continues until there 

are no examples left in the collection and all objects have been classified. Figure 1 

summarizes the steps involved in RULES-EXT.  
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Step 1.   Eliminate (if  there are any) repeated examples 

Step 2.   Find out all classes contained in the set of examples 

Step 3.   Define ranges for the attributes which have numerical values and assign labels to them 

Step 4.   Set the minimum number of conditions (Ncmin) for each rule 

Step 5.   Take an unclassified example 

Step 6.   Nc = Ncmin -1  

Step 7.   If Nc < Na  then  Nc = Nc+1 

Step 8.   Take all values or labels contained in the example 

Step 9.   Form objects which are combinations of Nc values or labels obtained in Step 8 

Step 10. If at least one of the objects belongs to a unique class then form rules with them; 

              ELSE go to Step 7 

Step 11. Select the rule which classifies the highest number of examples 

Step 12. Remove examples classified by the selected rule 

Step 13. If there are no more unclassified examples then STOP;   ELSE go to Step 5 

 
Figure 1. Induction procedure in RULES-EXT 

 (Nc= number of conditions, Na= number of attributes) 

3.2.  Multi-Layer Perceptron 

        The multi-layer perceptron (MLP) is based on the perceptron, the oldest type of 

artificial neural network. An MLP normally consists of an input layer, an output layer 

and one or more hidden layers of neurons. Signals propagate in one direction from the 

input layer through the hidden layers to the output layer. Consequently the network is 

known as a feedforward network. 

        The neurons in an MLP usually have non-linear output activation (i.e. a non-linear 

transfer function). This enables an MLP to perform complex mappings which could not 

be achieved by the original single-layer perceptron. 

        MLPs are generally trained to carry out a particular mapping by applying the 

backpropagation supervised learning algorithm. Errors, or differences between the 

actual output of the network and the desired output corresponding to some training 

input, are propagated backwards from the output layer towards the input layer to 

determine the necessary  adjustments to the weights of the connections between neurons 

in the network. The adjustments are made by following the error gradient. The aim of 

the training is to find the set of weights yielding the smallest error. 

       Training is controlled by  a learning rate (η) and momentum  constant (α), both in 

the range 0 to 1. The learning rate affects the amount of weight modification in response 

to a training input. Large values of η cause learning instability and conversely too small 

a value of η slows the learning process unacceptably. In some cases it might be useful 

to start with a large η and then reduce it to achieve a gradual convergence to the global 

minimum. The momentum constant α acts to smooth the weight modifications. In 

general, a high value of α can speed up the training [15, 16]. 

 

3.3.  The Combined System: CSLS 
       CSLS (Connectionist Symbolic Learning System) is an improved version of 

COSINE (A Combined System for Inductive and Neural Learning) [17]. It  employes 

RULES-EXT instead of RULES3 for induction part.   
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Figure 2. The Operation of CSLS 

 

 

Before CSLS can be employed, the multi-layer perceptron requires configuring. That is, 

the number of input and output neurons, the number of hidden layers, and the number of 

neurons in the hidden layers have to be decided. For a given problem, the number of 

input neurons is taken as the number of attributes and the number of output neurons, the 

number of classes. Each attribute is assigned to an input neuron and a class, to an output 

neuron. For simplicity, the number of hidden layers is fixed at 1, since it has been 

demonstrated that one hidden layer is sufficient for an MLP to carry out arbitrarily 

complex mappings [18]. The number of hidden neurons is made approximately equal to 

twice the number of input neurons, as it has been found empirically that this would yield 

a good performance. The hidden neurons have sigmoidal activation functions. The input 

and output neurons have linear activation functions. The training parameters (learning 

rate, momentum constant and maximum number of iterations) of the MLP also need 

setting. The training data has first to be converted into suitable formats. Numerical 

attributes are automatically divided into equal intervals which are given symbolic labels 

Set of examples 

Revised set of examples for 

Induction Algorithm 

Revised set of examples for 

Neural Network 

Training by 

RULES-EXT 
Training by Neural Network 

Set of Rules Trained Neural Network 

Unseen example(s) 

Decision by RULES Decision by Neural Network 

Final Decision by CSLS 
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for RULES-EXT to handle. Nominal attributes are assigned numerical values before 

being input to the MLP. Classes corresponding to particular input attributes are 

converted into binary numbers which are set as the desired outputs of the MLP. In 

addition to the training data, a selection of test data is retained to evaluate the 

generalization ability of RULES-EXT and the MLP after they have been trained on a 

given problem. The generalization ability is defined as the percentage of correct 

classifications made over the total number of test data. 

        

       When an unseen input is presented to CSLS, five situations can occur: 

 

I. The MLP and RULES-EXT have the same output. In this case, that output is taken 

as the output of CSLS. 

II. The MLP has a valid output but RULES-EXT does not have a valid output. In this 

situation, the output of CSLS is equated to that of the MLP. 

III. The MLP does not have a valid output and the input matches one of the rules 

induced by RULES-EXT. The output of RULES-EXT is then adopted as that of 

CSLS. 

IV. The MLP and RULES-EXT give different outputs. The output of CSLS in this 

situation is that of the component with the highest generalization ability as 

determined using the test set. 

V. The MLP does not have a valid output and the input is not classifiable by RULES-

EXT. In this case, the input is added to the training set to update the weights of the 

MLP and to extract new rules for RULES-EXT. 

 

       CSLS has the ability to improve one of its components using the other component. 

For example, if RULES-EXT cannot have a valid output but the MLP can produce a 

valid output corresponding to the same input, then this input-output pair is employed as 

a new example to train RULES-EXT. On the other hand, if the MLP does not have a 

valid output when presented with a new input which, in contrast, RULES-EXT is able to 

classify, then the outcome of RULES-EXT is set aside to train the MLP. The Operation 

of CSLS is shown in Figure 2. 

4. EVALUATION RESULTS 

 

        The system was evaluated on the IRIS data and Breast-Cancer-Wisconsin-data 

classification problems that are explained in the following three sections.  

 

4.1. The IRIS data Problem 

       The data was employed by Fisher [19] to derive the linear discriminant function and 

is still the standard discriminant analysis example used for testing most current 

statistical pattern classification algorithms [20,21]. The data set contains 150 examples 

belonging to one of three classes named Iris-Setosa, Iris-Versicolor and Iris-Virginica. 

Each item in the data set has four attributes, Sepal-Length, Sepal-Width, Petal-Length 

and Petal-Width. The data contains 150 examples. 59 examples were randomly chosen 

for training and 91 for testing CSLS. The number of quantisation levels were set to 11 

for all examples for RULES-EXT. The minimum number of conditions for each rule 

was set to 2 and the number of rules to be extracted for each example was set to 
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maximum. The main features of the training case for RULES-EXT are summarized in 

Table 1.  

 

Table 1. The Main Features of Training of IRIS data and  

               Breast-Cancer-Wisconsin-data for RULES-EXT 

 attributes classes quantization 

Levels 

training 

examples 

extracted 

rules 

selected 

Rules 

IRIS 4 3 11 59 115 20 

Breast 

Cancer 

 

10 

 

2 

 

6 

 

200 

 

30 

 

30 

 

 

The same data set has been used to train MLP as well. The main features of training 

IRIS data for MLP is given in Table 2. 

 

Table 2. The Main Features of Training of IRIS data and  

  Breast-Cancer-Wisconsin-data for MLP 

 Number of 

 inputs outputs hidden 

layers 

hidden 

nodes 

learning 

Rate 

momentum 

constant 

iterations training 

examples 

IRIS 4 3 1 9 0.4 0.8 300000 59 

Breast 

Cancer 

 

10 

 

2 

 

1 

 

11 

 

0.4 

 

0.8 

 

100000 

 

200 

 

 

4.2. The Breast-Cancer-Wisconsin-data Problem 

          Samples arrive periodically as Dr. Wolberg reports his clinical cases [21].  The 

database therefore reflects this chronological grouping of the data. The data contains 10 

attributes namely: 1. Sample code number, 2. Clump Thickness, 3. Uniformity of Cell 

Size, 4. Uniformity of Cell Shape, 5. Marginal Adhesion, 6. Single Epithelial Cell Size, 

7. Bare Nuclei, 8. Bland Chromatin, 9. Normal Nucleoli, and 10. Mitoses. The values 

for all attributes except Sample code number is an integer number from 1 to 10. The 

class is 2 for benign and 4 for malignant. 

       The data contains 698 examples. 200 were randomly chosen for training and 498 

for test. 

       The main features of the training case for RULES-EXT are summarized in Table 1, 

and for MLP in Table 2 respectively.  

 

4.3. Performance of CSLS for IRIS Data and Breast-Cancer-Wisconsin Data 

       The CSLS was tested for the two example problems and the results are given in 

Table 3 and Table 4 respectively. For IRIS data problem 91 and for Breast-Cancer-

Wisconsin data problem 498 randomly chosen test examples have been used to evaluate 

the performance of the system. For IRIS data, the MLP correctly classified 84 examples 

out of 91, the RULES-EXT correctly classified 80 examples out of 91. The CSLS 

correctly classified 86 examples out of 91. As it can be seen from Table 3, the 
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performance of CSLS is better than the performance of its two components. The reason 

is that, the unclassified examples by MLP and RULES-EXT are different examples. The 

CSLS could classify some of these examples and that is why its performance is better. 

  
Table 3. Performances of the MLP, RULES-EXT and CSLS for IRIS data. 

 

 MLP RULES-EXT CSLS 

Number of test examples 91 91 91 

Number of correctly classified examples 84 80 86 

Number of misclassified examples 7 11 5 

Performance 92% 88% 95% 

 

       The performance of CSLS for Breast-Cancer-Wisconsin data is also much better than its 

components. As it can be seen in Table 4, the CSLS was unable to correctly classify 17 

examples out of 498. The number of unclassified examples by MLP is 39 and by RULES-EXT 

is 46. The performance of the system was 97% while the performance of MLP was 92% and the 

performance of RULES-EXT was 91%. The reason for the performance of RULES-EXT being 

less than the performance of MLP is that, the data sets for both cases contain totally numerical 

attributes.  

  

Table 4. Performances of the MLP, RULES-EXT and CSLS for Breast-Cancer-Wisconsin data. 

 

 MLP RULES-EXT CSLS 

Number of test examples 498 498 498 

Number of correctly classified examples 459 452 481 

Number of missclassified examples 39 46 17 

Performance 92% 91% 97% 

 

4. CONCLUSION 

 

        CSLS is a symbiotic combination of inductive and neural learning. It possesses the 

strengths of these individual forms of learning: a guaranteed ability to learn, an equal 

aptitude for handling symbols and numerical data, a high degree of robustness and a 

good capacity for generalization. The symbiotic nature of CSLS is evident both in its 

adoption of the best output of its components as the overall system output and in its use 

of one component to improve the other when appropriate. This has resulted in CSLS 

having a better performance than either of its components as demonstrated in the IRIS 

data and Breast-Cancer-Wisconsin data classification problems. 
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