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Abstract-In this article, homotopy perturbation method is implemented to give approximate 

and analytical solutions of nonlinear ordinary differential equation systems such as human T-

cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells model. The proposed scheme 

is based on homotopy perturbation method (HPM), Laplace transform and Padé 

approximants. The results to get the homotopy perturbation method (HPM) is applied Padé 

approximants. Our proposed approach showed results to analytical solutions of nonlinear 

ordinary differential equation systems. Some plots are presented to show the reliability and 

simplicity of the methods. 
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1. INTRODUCTION 

 

Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells 

is examined [3] at the study. The components of the basic four-component model are the 

concentration of healthy CD4+ T-cells at time t, the concentration of latently infected CD4+ 

T-cells, the concentration of actively infected CD4+ T-cells and the concentration of 

leukemic cells at time t are denoted respectively by T(t), (t) , ( ) and (t)L A MT T t T .These 

quantities satisfy 
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      (1) 

with the initial conditions: 

1 2 3 4(0) , (0) , (0) , (0) .L A MT P T P T P T P     Throughout this paper, we set 

0.66, 0.06, 0.05, 0.005, 0.5, 0.004, 0.0003, 0.00004T L A M k               

and max 2200T   

A technique for calculating the analytical solutions of nonlinear ordinary differential 

equation systems is developed in this paper. The developed technique depends only on the 

fundamental operation properties of Laplace transform and Padé approximants. The 

calculated results are exactly the same as those obtained by other analytical or approximate 

methods and demonstrate the reliability and efficiency of the  
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technique. We will use Laplace transform and Pade´ approximant to deal with the truncated 

series. Pade´ approximant [2] approximates a function by the ratio of two polynomials. The 

coefficients of the powers occurring in the polynomials are determined by the coefficients in 

the Taylor series expansion of the function. Generally, the Pade´ approximant can enlarge 

the convergence domain of the truncated Taylor series and can improve greatly the 

convergence rate of the truncated Maclaurin series. 

 The motivation of this paper is to extend the application of the analytic homotopy-

perturbation method (HPM) [8-9] and Padé approximants [1] to solve of human T-cell 

lymphotropic virus I (HTLV-I) infection of CD4+ T-cells (1). The homotopy perturbation 

method (HPM) and the variational iteration method was first proposed by Chinese 

mathematician He [8-9,12-15]. The first connection between series solution methods such as 

an Adomian decomposition method and Padé approximants was established in [6]. The 

transmission and dynamics of HTLV-I feature several biological characteristics that are of 

interest to epidemiologists, mathematicians, and biologists, see, for example, [10-11,16], etc. 

Like HIV, HTLV-I targets CD4+ T-cells, the most abundant white cells in the immune 

system, decreasing the body’s ability to fight infection. 

 

2 PADÉ APPROXIMATON 

 A rational approximation to ( )f x  on  ,a b  is the quotient of two polynomials 

( ) and ( )N MP x Q x  of degrees N and M, respectively. We use the notation 
, ( )N MR x  to denote 

this quotient. The 
, ( )N MR x  Padé approximations to a function ( )f x  are given by [1] 

 ,

( )
( )    for  a x b.

( )

N

N M

M

P x
R x

Q x
          (2) 

 The method of Padé requires that ( )f x  and its derivative be continuous at 0x  . The 

polynomials used in (2.1) are  

 2

0 1 2( ) ... N

N NP x p p x p x p x           (3) 

 2

1 2( ) 1 ... M

M MQ x q x q x q x            (4)

 The polynomials in (3) and (4) are constructed so that ( )f x  and 
, ( )N MR x  agree at 

0x   and their derivatives up to N M  agree at 0x  . In the case 0 ( ) 1Q x  , the 

approximation is just the Maclaurin expansion for ( )f x . For a fixed value of N M  the 

error is smallest when ( ) and ( )N MP x Q x  have the same degree or when ( )NP x  has degree 

one higher then ( )MQ x . 

 Notice that the constant coefficient of MQ  is 0 1q  . This is permissible, because it 

notice be 0 and 
, ( )N MR x  is not changed when both ( ) and ( )N MP x Q x  are divided by the 

same constant. Hence the rational function 
, ( )N MR x  has 1N M   unknown coefficients. 

Assume that ( )f x  is analytic and has the Maclaurin expansion 

 2

0 1 2( ) ... ...,k

kf x a a x a x a x            (5) 

And from the difference ( ) ( ) ( ) ( ) :M Nf x Q x P x Z x 
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The lower index 1j N M    in the summation on the right side of (6) is chosen because 

the first N M  derivatives of ( )f x  and 
, ( )N MR x  are to agree at 0x  . 

 When the left side of (6) is multiplied out and the coefficients of the powers of ix  are 

set equal to zero for 0,1,2,...,k N M  , the result is a system of 1N M   linear 

equations: 

0 0

1 0 1 1

2 0 1 1 2 2

3 0 2 1 1 2 3 3

1 1

0

0

0

0

0

and

M N M M N M N N

a p

q a a p

q a q a a p

q a q a q a a p

q a q a a p   

 

  

   

    

   

        (7) 

1 1 2 1 2

2 1 3 1 1 2

...     + 0

...     + 0

.                                                                       .

.                                              

M N M M N M N N

M N M M N M N N

q a q a q a a

q a q a q a a

     

      

   

   

1 1 1 1

                        .

.                                                                      .

...     + 0M N M N N M N Mq a q a q a a       

      (8) 

Notice that in each equation the sum of the subscripts on the factors of each product 

is the same, and this sum increases consecutively from 0 to N M . The M  equations in (8) 

involve only the unknowns 1 2 3, , ,..., Mq q q q  and must be solved first. Then the equations in 

(7) are used successively to find 1 2 3, , ,..., Np p p p [1]. 

 

  

3. HOMOTOPY PERTURBATION METHOD 

 

To illustrate the homotopy perturbation method (HPM) for solving non-linear 

differential equations, He [8, 9] considered the following non-linear differential equation: 

 ( ) ( ),A u f r r           (9) 

subject to the boundary condition 

 , 0,
u

B u r
n

 
  

 
        (10) 

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic 

function,   is the boundary of the domain   and 
n




 denotes differentiation along the 

normal vector drawn outwards from  . The operator A can generally be divided into two 

parts M and N. Therefore, (9) can be rewritten as follows: 

 ( ) ( ) ( ),M u N u f r r          (11) 
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He [8,9] constructed a homotopy  ( , ) : 0, 1v r p x   which satisfies 

    0( , ) (1 ) ( ) ( ) ( ) ( ) 0,H v p p M v M u p A v f r          (12) 

which is equivalent to 

  0 0( , ) ( ) ( ) ( ) ( ) ( ) 0,H v p M v M u pM v p N v f r          (13) 

where  0, 1p  is an embedding parameter, and 0u  is an initial approximation of (9). 

Obviously, we have 

 0( ,0) ( ) ( ) 0, ( ,1) ( ) ( ) 0.H v M v M u H v A v f r          (14) 

The changing process of p from zero to unity is just that of H(v,p) from 

0( ) ( ) to ( ) ( )M v M v A v f r  . In topology, this is called deformation and 

0( ) ( ) and ( ) ( )M v M v A v f r   are called homotopic. According to the homotopy 

perturbation method, the parameter p is used as a small parameter, and the solution of Eq. 

(12) can be expressed as a series in p in the 

form 

 2 3

0 1 2 3 ...v v pv p v p v            (15) 

When 1p  , Eq. (12) corresponds to the original one, Eqs. (11) and (15) become the 

approximate solution of Eq. (11), i.e., 

0 1 2 3
1

lim ...
p

u v v v v v


             (16) 

The convergence of the series in Eq. (16) is discussed by He in [8, 9]. 

 

4. APPLICATIONS 

 

In this section, we will apply the homotopy perturbation method to nonlinear 

ordinary differential systems (1). 

4.1 Homotopy perturbation method to a human T-cell lymphotropic virus I 

(HTLV-I) infection of CD4+ T-cells 

 

  

According to homotopy perturbation method, we derive a correct functional as 

follows: 
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      

      

  
          

  

    (17) 

 

where “dot” denotes differentiation with respect to t , and the initial approximations are as 

follows: 
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1,0 0 1

2,0 0 2

3,0 0 3

4,0 0 4

( ) ( ) (0) ,

( ) ( ) (0) ,

( ) ( ) (0) ,

( ) ( ) (0) .

L
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M

v t x t T P

v t y t T P
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         (18) 

and 
2 3

1 1,0 1,1 1,2 1,3

2 3

2 2,0 2,1 2,2 2,3

2 3

3 3,0 3,1 3,2 3,3

2 3

4 4,0 4,1 4,2 4,3

...,

...,

...,

...,

v v pv p v p v

v v pv p v p v

v v pv p v p v

v v pv p v p v

    

    

    

    

       (19) 

where 
, , , 1,2,3,...i jv i j  are functions yet to be determined. Substituting Eqs.(18) and (19) 

into Eq. (17) and arranging the coefficients of “p” powers, we have 

    
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   (20) 

In order to obtain the unknowns 
, ( ), , 1,2,3,i jv t i j   we must construct and solve the 

following system which includes nine equations with nine unknowns, considering the initial 

conditions  

, (0) 0, , 1,2,3,i jv i j   
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From Eq. (16), if the three terms approximations are sufficient, we will obtain: 
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max

2

4 4
3 4 2

max max

2 3

1 3 2

4
2 3

max

2

4

max

( )

2
1

         
2

21
       

6

2

M M

M M

A

L

A M A

M

P
T t P P P t

T

P P
P P

T T t

P P

kPP P

P
P P

T

P

T


  

 
    

   

  


        


  

 
     

 

   
        

    
   

 

 
         

 

 
   
 

 

3

2

4
3 4

max

M

t

P
P P

T


 

 
 
 
 
 
 
 
  
    
   

  (23) 

 . 

 . 

 . 

 

Here  
3 3 3(0) 1000/ , (0) 250/ , (0) 1.5/   and (0) 0L A MT mm T mm T mm T     for the four-

component model. 
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A few first approximations for ( ), ( ), ( ) and ( )L A MT t T t T t T t  are calculated and presented 

below: 

Three terms approximations: 
2 3

2 3

2 3

2 3

( ) 1000 90.6 70.108 +7.731499133 ,

( ) 250 748.4 37.81512 +7.61158861 ,

( ) 01.5 .02494 .1490560012 .0025557619 ,

( ) .00006 .0000003578 +.000001986852796 .

L

A

M

T t t t t

T t t t t

T t t t t

T t t t t

  

  

   

 

     (24) 

Four terms approximations: 

  
2 3 4

2 3 4

2 3 4

2

( ) 1000 90.6 70.108 +7.731499133 -4.514321208 ,

( ) 250 748.4 37.81512 +7.61158861 3.226445308 ,

( ) 01.5 .02494 .1490560012 .0025557619 .0007291862795 ,

( ) .00006 .0000003578 +

L

A

M

T t t t t t

T t t t t t

T t t t t t

T t t t

  

   

    

  3 4.000001986852796 .5811660548e-8 .t t

  (25) 

Five terms approximations: 

  
2 3 4

5

2 3 4

5

2 3

( ) 1000 90.6 70.108 +7.731499133 -4.514321208

        +2.202684204 ,

( ) 250 748.4 37.81512 +7.61158861 3.226445308

          -1.610923654 ,

( ) 01.5 .02494 .1490560012 .0025557619

L

A

T t t t t t

t

T t t t t t

t

T t t t t

  

   

    4

5

2 3 4

5

.0007291862795

         +.0002508179284 ,

( ) .00006 .0000003578 +.000001986852796 .5811660548e-8

          +.5811660548e-8 .

M

t

t

T t t t t t

t



  

  (26) 

Six terms approximations: 

  
2 3 4

5 6

2 3 4

5 6

( ) 1000 90.6 70.108 +7.731499133 -4.514321208

        +2.202684204 .6157592898 ,

( ) 250 748.4 37.81512 +7.61158861 3.226445308

          -1.610923654 .3751823458 ,

( ) 01.5 .02494

L

A

T t t t t t

t t

T t t t t t

t t

T t t

  



   



  2 3 4

5 6

2 3 4

5 6

.1490560012 .0025557619 .0007291862795

         +.0002508179284 .1094867318e-3 ,

( ) .00006 .0000003578 +.000001986852796 .5811660548e-8

          +.5811660548e-8 .1667567057e-8 .

M

t t t

t t

T t t t t t

t t

  



  



  (27) 

In this section, we apply Laplace transformation to (27), which yields 
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 
2 3 4

5 6 7

100 90.6 140.216 46.3889948
( ) +

s s s s

108.343709 264.3221045 443.3466887
         - +

s s s

L T s   



 

 
2 3 4

5 6 7

250 748.4 75.63024 45.66953166
( ) +

s s s s

77.43468739 193.3108385 270.131289
         +

s s s

LL T s   

 

     (28) 

 
2 3 4

5 6 7

1.5 .02494 .2981120024 .0153345714
( ) +

s s s s

.01750047071 .03009815141 .0788304469
         +

s s s

AL T s   

 

 

 
2 3 4

5 7

0.00006 .0000007156 .00001192111678
( ) +

s s s

.000000557353607 .000001200648281
         +

s s

ML T s  



 

 

For simplicity, let 
1

;s
t

  then 

2 3 4 5

6 7

( ( )) 100 90.6 -140.216 46.3889948 -108.343709

       264.3221045 -443.3466887

L T t t t t t t

t t

  


 

2 3 4 5

6 7

( ( )) 250 +748.4 75.63024 45.66953166 77.43468739

       -193.3108385 +270.131289

LL T t t t t t t

t t

   
  (29) 

2 3 4 5

6 7

( ( )) 1.5 +.02494 .2981120024 .0153345714 .01750047071

       +.03009815141 -.788304469

AL T t t t t t t

t t

   
 

2 3 4 5

7

( ( )) 0.00006 .0000007156 .00001192111678 .000000557353607

       +.000001200648281

ML T t t t t t

t

   
 

Padé approximant  4 / 4 of (29) and substituting 
1

t
s

 , we obtain  4 / 4  in terms of s. By 

using the inverse Laplace transformation, we obtain 

 

 

-.449004857 -.2743271492

-.4112696069

( ) -2029.558117 3049.429417

      -19.87130089cos(1.572742785 ) +4.887871691sin(1.572742785 )

t t

t

T t e e

e t t

 


 

 

 

-.7972283788

.09932940685

( ) 5.705934771cos(1.211231026 ) 29.58485206sin(1.211231026 )

        244.2940654cos(.1019716214 ) 6794.530172sin(.1019716214 )

t

L

t

T t e t t

e t t

 

 
(30) 

-1.095137053 -.5130323164

.4358409947 2.028504412

( ) -.03754095721 .7224835299

        +.8155286715 -.0004712445489

t t

A

t t

T t e e

e e

 
 

-.4396582501 .4515849168( ) -.00006732169426 .00006732169426t t

MT t e e 
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These results obtained by Padé approximations for ( ), ( ), ( ) and ( )L A MT t T t T t T t are calculated 

and presented follow. 

 
Figure. 1. Plots of Padé approximations for human T-cell lymphotropic virus I (HTLV-I) 

infection of CD4+ T-cells model. 

 

These results obtained by homotopy perturbation method, three, four, five and six terms 

approximations for ( ), ( ), ( ) and ( )L A MT t T t T t T t are calculated and presented follow. 
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Figure. 2. Plots of three, four, five and six terms approximations for human T-cell 

lymphotropic virus I (HTLV-I) infection of CD4+ T-cells Model 

 

5. CONCLUSIONS 

In this paper, we have presented an after treatment technique for the homotopy 

perturbation method. Because the Pade´ approximant usually improves greatly the Maclaurin 

series in the convergence region and the convergence rate, the at leads to a better analytic 

approximate solution from homotopy perturbation method truncated series The homotopy 

perturbation method was used for finding the solutions of nonlinear ordinary differential 

equation systems such as human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-

cells model. We demonstrated the accuracy and efficiency of these methods by solving some 

ordinary differential equation systems. We use Laplace transformation and Padé 

approximant to obtain an analytic solution and to improve the accuracy of homotopy 

perturbation method. The reliability of the method and reduction in the size of computational 

domain give this method a wider applicability. It is observed that The results to get the 

homotopy perturbation method (HPM) applied Padé approximants is an effective and 

reliable tool for the solution of the nonlinear ordinary differential equation systems 

considered in the present paper. 

 The computations associated with the examples in this paper were performed using 

Maple 7 and Matlab 7 
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