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Abstract- A new perturbation algorithm combining the Method of Multiple Scales and 

Lindstedt-Poincare techniques is proposed for the first time. The algorithm combines 

the advantages of both methods. Convergence to real solutions with large perturbation 

parameters can be achieved for both constant amplitude and variable amplitude cases. 

Three problems are solved: Linear damped vibration equation, classical duffing 

equation and damped cubic nonlinear equation. Results of Multiple Scales, new method 

and numerical solutions are contrasted. The proposed new method produces better 

results for strong nonlinearities.  
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1. INTRODUCTION 

Perturbation methods are well established and used for over a century to 

determine approximate analytical solutions for mathematical models. Algebraic 

equations, integrals, differential equations, difference equations and integro-differential 

equations can be solved approximately with these techniques. The direct expansion 

method (pedestrian expansion) does not produce physically valid solutions for most of 

the cases and depending on the nature of the equation, many different perturbation 

techniques such as Lindstedt-Poincare technique, Renormalization method, Method of 

Multiple Scales, Averaging methods, Method of Matched  Asymptotic Expansions etc. 

are developed within time.  

 One of the deficiencies in applying perturbation methods is that a small 

parameter is needed in the equations or the small parameter should be introduced 

artificially to the equations. Nevertheless, the problem solved is a weak nonlinear 

problem and it becomes hard to obtain an approximate solution valid for strongly 

nonlinear systems.  

 There have been a number of attempts recently to validate perturbation solutions 

for strongly nonlinear systems also. Hu and Xiong [1] contrasted two different 

approaches of Lindstedt-Poincare methods using the duffing equation. First, they solved 

the equation with classical method and then they made a slight modification in the 

expansions. Instead of expanding the transformation frequency, they expanded the 

natural frequency and obtained solutions with excellent convergence properties for the 

duffing equation. The time histories of solutions agree with the numerical solutions for 

arbitrarily large perturbation parameters. In a similar paper, the approximate and exact 

frequencies are contrasted for the duffing equation [2]. The case of vanishing restoring 
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force was also treated for the same equation [3]. The periods obtained are contrasted 

with the exact period with good convergence properties for large parameters.  

 While a complete review of the attempts to validate perturbation solutions for 

strongly nonlinear oscillators is beyond the scope of this work, a partial list will be 

given. Among the many developed methods, Linearized perturbation method [4-6], 

parameter expanding method [7, 8], new time transformations as modifications of 

Lindstedt-Poincare method [9-11], iteration methods [12, 13] are some examples.  

 In this work, Multiple Scales method is modified by incorporating the time 

transformation of Lindstedt Poincare method. One of the major advantages of Multiple 

Scales method over the Lindstedt Poincare method is that transient solutions can be 

found using the former whereas it is impossible to retrieve such solutions using the 

latter. However, by expanding the natural frequency in modified Lindstedt Poincare 

method as in [1-3], convergent solutions for large parameters are possible. Combining 

both methods would augment the advantages of them in a single method so that 

transient solutions with improved convergence properties can be retrieved. The method 

will be outlined in the next section and will be applied to three models in the subsequent 

sections. Comparisons of both methods with numerical results will be displayed. For the 

models considered, the new method is in good agreement with the numerical 

simulations. The method may find applications in a variety of problems.  

 

2. MULTIPLE SCALES LINDSTEDT POINCARE (MSLP) METHOD 

The outline of the method and the guidelines will be given in this section. 

Consider the nonlinear equation  

0)u(fuu 2

0 =ε+ω+&&  

where ε is the perturbation parameter. The essential steps in the method are 

1) Make the time transformation as in Lindstedt-Poincare method.  

τ = ωt               (1) 

0)u(fuu 2

0

2 =ε+ω+′′ω             (2) 

where prime denotes differentiation with respect to new time variable τ.  
2) Define the fast and slow time scales  

T0 = τ = ωt,  T1 = ετ = εωt,  T2 = ε
2τ = ε2ωt        (3) 

3) The transformed time derivatives and dependent variable are expanded as in classical 

Multiple Scales method 

K+ε+ε+=
τ 2

2

10 DDD
d

d
,  K++ε+ε+=

τ
)DD2D(DD2D

d

d
20

2

1

2

10

2

02

2

    (4) 

K+ε+ε+= )T,T,T(u)T,T,T(u)T,T,T(uu 2102

2

21012100         (5) 

4) As in classical Lindstedt-Poincare method ω2
 is expanded 

K+ωε+εω+ω=ω 2

2

1

2

0

2              (6) 

5) Following [1-3], instead of ω2
, as usual in Lindstedt-Poincare method, ω0

2
 is 

substituted  

K+ωε−εω−ω=ω 2

2

1

22

0             (7) 

6) Equations (4), (5) and (7) are substituted into (2) 
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0)uuu(f)uuu)((

)uuu))(DD2D(DD2D(

2

2

102

2

102

2

1

2

2

2

1020

2

1

2

10

2

0

2

=ε+ε+ε+ε+ε+ωε−εω−ω+

ε+ε++ε+ε+ω
       (8) 

7) The equations at each order are separated 

O(1): 0uuD 0

2

0

2

0

2 =ω+ω            (9) 

O(ε): )u(fuuDD2uuD 001010

2

1

2

1

2

0

2 −ω+ω−=ω+ω       (10) 

O(ε2): 
100211

020

2

1

2

110

2

2

2

2

2

0

2

u)u(fuu

u)DD2D(uDD2uuD

′−ω+ω+

+ω−ω−=ω+ω
     (11) 

The solution at the first order is 

cce)T,T(Au 0iT

210 +=          (12) 

where cc stands for complex conjugates of the preceding terms.  

8) The problem at the second and third order is that one has two mechanisms for 

eliminating secular terms. Either select D1A or ω1 in equation (10) and select D2A or ω2 

in equation (11). One should first try D1A=0 and solve ω1. If ω1 is a real number then 

the selection is fine. If ω1 is complex, this choice will provide unphysical solutions as 

also pointed by Nayfeh [14]. In that case, select ω1=0 and eliminate secularities by 

choosing D1A. The same reasoning is also valid at the next order of approximation. If 

ω2 is real when D2A=0, the selection is fine. If not, then select ω2=0 and choose D2A to 

eliminate secularities. The algorithm will be applied to three different problems in the 

forthcoming sections.  

 

3.LINEAR DAMPED OSCILLATOR 

 Consider the linear damped oscillator 

0u2uu 2

0 =εµ+ω+ &&&             (13) 

The new method will be applied to this equation. First, the time transformation is made  

τ = ωt              (14) 

0u2uu 2

0

2 =′εµω+ω+′′ω            (15) 

where prime denotes differentiation with respect to new time variable τ. Fast and slow 
time scales are 

T0 = τ = ωt,  T1 = ετ = εωt,  T2 = ε
2τ = ε2ωt       (16) 

The time derivatives, dependent variable and frequency are expanded  

K+ε+ε+=
τ 2

2

10 DDD
d

d
,  K++ε+ε+=

τ
)DD2D(DD2D

d

d
20

2

1

2

10

2

02

2

   (17) 

K+ε+ε+= )T,T,T(u)T,T,T(u)T,T,T(uu 2102

2

21012100        (18) 

K+ωε+εω+ω=ω 2

2

1

2

0

2             (19) 

and substituted into (15) 

0)uu)(DD(2)uuu)((

)uuu))(DD2D(DD2D(

10102

2

102

2

1
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2

2
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2

1
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2

0

2

=ε+ε+εµω+ε+ε+ωε−εω−ω+

ε+ε++ε+ε+ω
      (20) 

Note that instead of ω2
, ω0

2
 is expanded and substituted. The equations at each order are 

O(1): 0uuD 0

2

0

2

0

2 =ω+ω             (21) 
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O(ε): 0001010

2

1

2

1

2

0

2 uD2uuDD2uuD µω−ω+ω−=ω+ω         (22) 

O(ε2): 
)uDuD(2uu

u)DD2D(uDD2uuD

01100211

020

2

1

2

110

2

2

2

2

2

0

2

+µω−ω+ω+

+ω−ω−=ω+ω
       (23) 

The solution at the first order is 

cce)T,T(Au 0iT

210 +=            (24) 

Substituting the solution to (22) and rearranging yields 

cc)iA2AAiD2(euuD 11

2iT

1

2

1

2

0

2 0 +µω−ω+ω−=ω+ω        (25) 

Elimination of secular terms requires 

0iA2AAiD2 11

2 =µω−ω+ω−          (26) 

As outlined, one first tries D1A=0 and solve ω1=2µωi. Since ω1 is complex, this is not a 

suitable choice. Therefore, the appropriate selection is  

ω1= 0,  AAD1 ω
µ

−=            (27) 

Substituting the polar form  

β= iae
2

1
A             (28) 

to (27), separating real and imaginary parts yield 

1T

2 e)T(aa ω

µ
−

= , β=β(T2)         (29) 

Since the right hand side of (25) is annihilated, u1 can be selected as zero 

u1=0              (30) 

At the last order, substitute (24), (27) and (30) to the right hand side of (23) and 

eliminate the secular terms 

0AAAiD2 2

22

2 =µ−ω−ω             (31) 

If D2A=0, ω2 is a real number, so this choice is appropriate 

D2A=0,   ω2 = - µ
2
              (32) 

From (32) A and hence a and β does not depend on T2. Equation (29) reads 

1T

0eaa ω

µ
−

= ,   β=β0              (33) 

The frequency expansion is 
222

0

2 µε−ω=ω              (34) 

Using (34), (33), (30), (28), (24), (18) and (16), the final solution in terms of original 

time variable is  

( ) )(Otcosea)t(u 2

0

222

0

t

0 ε+β+µε−ω= εµ−            (35) 

In fact, this solution is the exact solution of the original equation. Application of 

classical multiple scales produces the following solution 

)(Ot
2

1cosea)t(u 2

02

0

22

0

t

0 ε+









β+









ω
µε

−ω= εµ−         (36) 

As can be verified easily, the frequency is a Taylor expansion of the exact frequency. 

Solution (36) is valid only when εµ<<ω0 whereas one does not have this restriction for 

(35) obtained by MSLP method.  
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4. DUFFING EQUATION 
 Duffing equation will be solved by classical Multiple Scales (MS) and Multiple 

Scales Lindstedt Poincare (MSLP) method. Solutions will be contrasted with the 

numerical simulations.  Consider the equation 

0uuu 32

0 =ε+ω+&&             (37) 

with initial conditions  

u(0)=a0, 0)0(u 0 =&            (38) 

 

4.1. Multiple Scales (MS) Method 

 Fast and slow time scales are  

T0 = t,  T1 = εt,  T2 = ε
2
t            (39) 

Using  

 K++ε+ε+= )DD2D(DD2D
dt

d
20

2

1

2

10

2

02

2

          (40) 

and substituting the expansion  

K+ε+ε+= )T,T,T(u)T,T,T(u)T,T,T(uu 2102

2

21012100        (41) 

into the original equation and initial conditions yields after separation 

O(1): 0uuD 0

2

00

2

0 =ω+  0)0(uD,a)0(u 0000 ==         (42) 

O(ε): 3

00101

2

01

2

0 uuDD2uuD −−=ω+      0)0)(uDuD(,0)0(u 01101 =+=       (43) 

O(ε2): 1

2

0020

2

11102

2

02

2

0 uu3u)DD2D(uDD2uuD −+−−=ω+        (44) 

The solution at the first order is 

cce)T,T(Au 00Ti

210 += ω
           (45) 

where  

β= iae
2

1
A              (46) 

In terms of real amplitude and phase, the first order solution is 

))T,T(tcos()T,T(au 210210 β+ω=           (47) 

Applying the initial conditions yield 

a(0)=a0,      β(0)=0             (48) 

Equation (45) is substituted into (43) and secular terms are eliminated 

0AA3ADi2 2

10 =+ω                (49) 

The polar form is substituted to above with the following results 

  )T(aa 20= , )T(Ta
8

3
201

2

0

0

β+
ω

=β  β0(0)=0       (50) 

The solution at order ε is 

)3T3cos(a
32

1
)Tcos(bcceA

8

1
Beu 00

3

2

0

00

Ti33

2

0

Ti

1
0000 β+ω

ω
+γ+ω=+

ω
+= ωω

     (51) 

where  

γ= ibe
2

1
B             (52) 

The initial conditions at this order imply 



 

 

M. Pakdemirli, M. M. F. Karahan and H. Boyacı 

 

36 

0)0()0(,a
32

1
)0(b 0

3

02

0

=β=γ
ω

−=          (53) 

At the last order, equations (51) and (45) are inserted into (44) and secular terms are 

eliminated  

0AA
8

3
BAA6BA3ADi2ADBDi2 23

2

0

2

20

2

110 =
ω

+++ω++ω       (54) 

If (46), (50), (52) and (53) are used above, one finally has  

2

4

03

0

1

2

0

0

3

02

0

0 Ta
256

21
Ta

8

3
,a

32

1
b,aa

ω
−

ω
=γ=β

ω
−==         (55) 

The final solution is  

[ ] )(O)tcos()t3cos(
32

a
)tcos(au 2

2

0

3

0
0 ε+ω−ω

ω
ε

+ω=             (56) 

where 

4

03

0

22

0

0

0 a
256

21
a

8

3

ω
ε−

ω
ε+ω=ω            (57) 

Invoking the well known perturbation criteria that correction terms are much smaller 

than the leading terms for valid solutions requires 

  1
32

a
2

0

2

0 <<
ω

ε
              (58) 

 

4.2. Multiple Scales Lindstedt Poincare (MSLP)Method  

 First the time transformation is applied to (37) 

0uuu 32

0

2 =ε+ω+′′ω             (59) 

where prime is derivative with respect to time variable τ=ωt. Fast and slow time scales 

are  

  T0 =τ,        T1 = ετ,  T2 = ε
2τ             (60) 

Using  

 K++++= )2(2 20

2

1

2

10

2

02

2

DDDDDD
d

d
εε

τ
          (61) 

and substituting the expansions  

K+ε+ε+= )T,T,T(u)T,T,T(u)T,T,T(uu 2102

2

21012100        (62) 

 2

2

1

22

0 ωε−εω−ω=ω              (63) 

into (59) and initial conditions (38) yield after separation 

O(1): 0uuD 0

2

0

2

0

2 =ω+ω  0)0(uD,a)0(u 0000 ==         (64) 

O(ε): 3

001010

2

1

2

1

2

0

2 uuuDD2uuD −ω+ω−=ω+ω    0)0)(uDuD(,0)0(u 01101 =+=   (65) 

O(ε2): 1

2

00211020

2

1

2

110

2

2

2

2

2

0

2 uu3uuu)DD2D(uDD2uuD −ω+ω++ω−ω−=ω+ω  (66) 

The solution at the first order is 

)Tcos(accAeu 0

iT

0
0 β+=+=           (67) 

Applying the initial conditions yield 

a(0)=a0,      β(0)=0             (68) 
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Equation (67) is substituted into (65) and secular terms are eliminated 

0AA3AADi2 2

11

2 =−ω+ω−              (69) 

D1A=0 is selected, which implies a=a(T2), β=β(T2) and ω1 is solved 

 2

1 a
4

3
AA3 ==ω              (70)  

which is suitable because ω1 is real. The solution at order ε is 

)3T3cos(a
32

1
)Tcos(bcceA

8

1
Beu 0

3

20

iT33

2

iT

1
00 β+

ω
+γ+=+

ω
+=           (71) 

The initial conditions at this order imply 

0)0(,a
32

1
)0(b 3

02
=γ

ω
−=               (72) 

At the last order, equations (71) and (67) are inserted into (66) and secular terms are 

eliminated  

0AA
8

3
BAA6BA3ABADi2BDi2 23

2

2

212

2

1

2 =
ω

−−−ω+ω+ω−ω−      (73) 

After algebraic manipulations, equation (73) yields  

 ,0,a
32

1
b,aa 3

020 =γ=β
ω

−== 4

022 a
128

3

ω
−=ω         (74) 

The frequency is  

4

02

22

0

2

0

2 a
128

3
a

4

3

ω
ε−ε+ω=ω            (75) 

ω2
 appear both at the left and right hand sides. Frequency is solved 

4

0

22

0

2

0

2

0

2

0

2

0 a30a9664a68
4

1
ε+εω+ω+ε+ω=ω          (76) 

which is exactly the same frequency given by Hu  and Xiong [1]  obtained by modified 

Lindstedt Poincare method. The final solution in terms of this frequency is 

  [ ] )(O)tcos()t3cos(
32

a
)tcos(au 2

2

3

0
0 ε+ω−ω

ω
ε

+ω=          (77) 

For valid solutions, the criterion is  

  1
32

a
2

2

0 <<
ω

ε
              (78) 

 

4.3. Comparisons with the Numerical Solutions 

Instead of criterion (58) in the classical method, convergence criterion is given 

in (78) in the new method. The major difference is that while ε tends to infinity, 
criterion (58) would not be valid whereas (78) is valid for arbitrarily large ε. To test, one 
takes the limit 

 

1044.0

)a30a9664a68(
16

1
32

a

32

a
lim

4

0

22

0

2

0

2

0

2

0

2

0

2

0

2

2

0 <<≅
ε+εω+ω+ε+ω

ε
=

ω
ε

∞→ε
           (79) 
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Therefore, the correction term in solution (77) is always a small quantity compared to 

the leading term which assures convergence. This cannot be said for solution (56). ω0 

being a constant in the denominator makes the correction term much larger than the 

leading term for large ε.  
To verify the results, time histories of both solutions are contrasted with the 

numerical solutions obtained by directly integrating the original Duffing equation. In all 

simulations ω0=1 and a0=1 are selected. In Figure 1, results are compared for ε=1. 
Although numerical and MSLP solutions are indistinguishable, MS solution is in 

reasonable agreement. This is because the convergence criterion (58)  

1
32

1

32

a
2

0

2

0 <<=
ω

ε
             (80) 

is still valid. In Figure 2, ε=10 and criterion (58) ceases to be valid and a qualitative and 
quantitative difference between the results can readily be seen. Note that numerical and 

MSLP solutions are still indistinguishable. Finally, in Figure 3, ε=100 is selected. For 
this strongly nonlinear case, MSLP and numerical solutions have an excellent 

agreement, while MS solutions are not realistic at all.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1- Comparison of approximate and numerical          Figure 2- Comparison of approximate and numerical  

solutions for duffing equation for )1,1a(1 00 =ω==ε          solutions for duffing equation for )1,1a(10 00 =ω==ε  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3- Comparison of approximate and numerical solutions for duffing equation for )1,1a(100 00 =ω==ε  
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5. DAMPED CUBIC NONLINEAR SYSTEM 

 In the previous section, a problem with constant amplitude solution was treated. 

For these problems, modified Lindstedt Poincare method also produces results 

convergent for large ε as was presented by Hu and Xiong [1]. For variable amplitude 

solutions, however, Lindstedt Poincare method does not produce realistic solutions. The 

aim in this section is to show that the new method proposed here is effective in 

producing convergent solutions for strongly nonlinear variable amplitude problems. 

Consider the equation 

0uu2uu 322

0 =εα+µε+ω+ &&&             (81) 

with initial conditions  

u(0)=a0, 0)0(u 0 =&             (82) 

 

5.1. Multiple Scales (MS) Method 

 Similar expansions are selected as in Section 4.1. The equations at each order are  

O(1): 0uuD 0

2

00

2

0 =ω+  0)0(uD,a)0(u 0000 ==         (83) 

O(ε): 3

00101

2

01

2

0 uuDD2uuD α−−=ω+    0)0)(uDuD(,0)0(u 01101 =+=      (84) 

O(ε2): 1

2

000020

2

11102

2

02

2

0 uu3uD2u)DD2D(uDD2uuD α−µ−+−−=ω+       (85) 

The solution at the first order is 

)Tcos(acce)T,T(Au 00

Ti

210
00 β+ω=+= ω

         (86) 

Applying the initial conditions yield 

a(0)=a0,      β(0)=0             (87) 

Solution (86) is substituted into (84) and secular terms are eliminated 

0AA3ADi2 2

10 =α+ω               (88) 

The polar form is substituted to above with the following results 

  )T(aa 20= , )T(Ta
8

3
211

2

0

0

β+
ω
α

=β              (89) 

The solution at order ε is 

)3T3cos(a
32

)Tcos(bcceA
8

Beu 00

3

2

0

00

Ti33

2

0

Ti

1
0000 β+ω

ω
α

+γ+ω=+
ω
α

+= ωω
     (90) 

where  

γ= ibe
2

1
B             (91) 

The initial conditions at this order imply 

0)0(,a
32

)0(b 3

02

0

=γ
ω
α

−=              (92) 

At the last order, equations (90) and (86) are inserted into (85) and secular terms are 

eliminated  

0BAA2BAAA
8

3Ai2ADi2ADBDi2 223

2

0

020

2

110 =







++

ω
α

α+ωµ+ω++ω     (93) 

If (88), (89), (91) and (92) are used above, one finally has  
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( ) 1

T22

0

0

T44

03

0

2
3

2

0

T

0 Tea
8

3
1ea

1024

21
,a

32
b,eaa 222 µ−µ−µ−

ω
α

+−
µω
α

=γ=β
ω
α

−==      (94) 

The final solution is  

[ ] )(O)tcos()3t3cos(a
32

)tcos(au 2

00

3

2

0

0 ε+β+ω−β+ω
ω
εα

+β+ω=           (95) 

where 

( ) tea
8

3
1ea

1024

21
,eaa t22

0

0

t44

03

0

2
t

0

222 µε−µε−µε−

ω
α

ε+−
µω
α

=β=         (96) 

The convergence criterion is 
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5.2. Multiple Scales Lindstedt Poincare (MSLP) Method 

 First the time transformation is applied to (81) 

0uu2uu 322

0
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with time variable τ=ωt. Selecting the fast and slow time variables and expansions as in 

Section 4.2, the equations at each order are 
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The solution at the first order is 

)Tcos(accAeu 0

iT

0
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Applying the initial conditions yield 

a(0)=a0,      β(0)=0           (103) 

The first order solution is substituted into (100) and secular terms are eliminated 

0AA3AADi2 2

11

2 =α−ω+ω−            (104) 

D1A=0 is selected, which implies a=a(T2), β=β(T2) and ω1 is solved 
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which is suitable because ω1 is real. The solution at order ε is 
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The initial conditions at this order imply 
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02
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At the last order, equations (106) and (102) are inserted into (101) and secular terms are 

eliminated  
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If D2A=0, ω2 will be a complex number which is not a suitable option. Therefore  

ω2 = 0             (109) 

 is selected. After algebraic manipulations, equation (108) yields  
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The final solution in terms of original variables is 
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For valid solutions, the criterion is  
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            (113) 

 

5.3. Comparisons with the Numerical Solutions 

In criteria (97) and (113), amplitude is a function of time. For sufficiently large t, 

convergence is assured because the amplitude decays in time. Letting ε tending to 
infinity would not spoil both convergence criteria also since increasing ε increases the 
amplitude decay rate. Instead, for strongly nonlinear systems, one should inspect the 

system behavior for large α. Adjusting α, nonlinearity can be increased without 
increasing the damping in the system. For large α and small times, criterion (97) can not 

be satisfied.  

Instead of criterion (97) in the classical method, convergence criterion is given 

in (113) in the new method. In case of large α, since ω is a function of α, it serves as a 
stabilizing factor in the denominator. The criterion is largest for t=0 which means a=a0. 

For this choice 
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Therefore, for large α, agreement with numerical solutions is expected in MSLP 

method. Time histories of both solutions are contrasted with the numerical solutions 

obtained by directly integrating the original damped equation with cubic nonlinearity in 

Figures 4-7. In all simulations ω0=1, a0=1, µ=1 and ε=0.1 are selected. In Figure 4, 
results are compared for α=1. Since criteria (97) and (113) are both satisfied, both 
approximate solutions are indistinguishable from the numerical ones. With increasing α 
in Figure 5 (i.e. α=10), separation starts, MSLP being in better agreement with the 
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numerical solutions. For α=50 in Figure 6, the qualitative behavior can also be 
distinguished for numerical and MS solutions but a good agreement can be seen with 

MSLP and numerical results. Same qualitative and quantitative behavior can be 

observed for α=100 in Figure 7. 
 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 4- Comparison of approximate and numerical                        Figure 5- Comparison of approximate and numerical                                                       
Solutions for damped  cubic nonlinear equation for                            solutions for damped cubic nonlinear equation for 

)1,1,1a,1.0(1 00 =µ=ω==ε=α                                                   )1,1,1a,1.0(10 00 =µ=ω==ε=α  

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 6- Comparison of approximate and numerical                       Figure 7- Comparison of approximate and numerical 

solutions for damped cubic nonlinear equation for                             solutions for damped cubic nonlinear equation for 

)1,1,1a,1.0(50 00 =µ=ω==ε=α                                    )1,1,1a,1.0(100 00 =µ=ω==ε=α  

                                                                                                                    

 

6. CONCLUDING REMARKS 

 A new perturbation technique combining the Multiple Scales and Lindstedt 

Poincare method is proposed for the first time. Instead of the transformation frequency, 

the natural frequency is expanded in a perturbation series. This choice leads to solutions 

with good convergence properties in Lindstedt Poincare method [1]. The new method is 

applied to three models: 1) Damped linear oscillator, 2) Duffing Equation, 3) Damped 

cubic nonlinear equation. In the first case, even the exact solution is retrieved by the 

method. In the second and third cases, the new method produced solutions with good 

agreement with the numerical solutions for strongly nonlinear problems. The classical 

Multiple Scales method however failed to produce close solutions with the numerical 

ones for strongly nonlinear problems.  
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 A further study would be to apply this new technique to partial differential 

equations. The nonlinearities arising in partial differential equations are classified using 

a suitable operator notation and general solution algorithms were developed for the 

models previously [15-17].  
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