

Mathematical and Computational Applications, Vol. 14, No. 1, pp. 1-12, 2009.

© Association for Scientific Research

SIMPLE AND U-TYPE ASSEMBLY LINE BALANCING BY USING AN ANT

COLONY BASED ALGORITHM

Adil Baykasoğlu and Türkay Dereli

Department of Industrial Engineering, University of Gaziantep, Gaziantep, Turkey

{baykasoglu, dereli}@gaziantep.edu.tr

Abstract- In this paper, an Ant Colony Optimization (ACO) based heuristic algorithm

is proposed for solving simple (straight line) and U-shaped assembly line balancing

problems (ALBP). The paper makes one of the first attempts to show how ACO

heuristic can be used to solve U-shaped ALBP. A new algorithm is proposed in this

paper that seamlessly integrates COMSOAL algorithm, Ranked Positional Weight

Heuristic (RPWH) and an ACO based heuristic in order to obtain good solutions to

simple and U-shaped ALBPs. The result of the computational study has shown that the

proposed algorithm is effective in solving simple/U-shaped line balancing problems.

Key Words- Assembly Line Balancing, Ant Colony Optimization, Heuristics

1. INTRODUCTION

ALBP relates to a finite set of work elements or tasks, each having an operation

processing time and a set of precedence relations, which specify the permissible

orderings of the tasks. One of the problems in organizing mass production is how to

group work tasks to be performed on workstations so as to achieve the desired level of

performance. Line balancing is an attempt to allocate equal amounts of work to the

various workstations along the line. The fundamental line-balancing problem is how to

assign a set of tasks to an ordered set of workstations, such that the precedence relations

are satisfied and some measure of performance is optimized [17]. When designing an

assembly line there are two main restrictions that must be imposed on the grouping of

work elements [15]. Precedence relationship; The cycle time is greater than or equal to

the maximum of any station time and of the time of any work element. The station time

must not exceed the cycle time.

The ALBP as defined above is known as a NP-hard problem [23] and it is

formally given in Equation set 1 [19]. Equation set 1 represents the type of

mathematical problem that is tried to be solved. Mathematical formulations for the U-

shaped ALBPs can also be found in Gokcen et al. [20], Gokcen and Agpak [21]. If there

are n tasks and r precedence requirements then there are roughly n!/2
r
 possible tasks

sequences in a simple ALBP [3]. With such a vast search space it is difficult to obtain

an optimal solution for big size problems by using deterministic algorithms. Many

attempts have been made in the literature to solve the ALB problem with exact

deterministic methods. Some of these methods have proven to be efficient for the

problems up to 300 tasks. But for larger problems their practical use is limited due to

their computational inefficiency. Baybars [3] and Talbot et al. [34] reviewed and

evaluated these different approaches.

A. Baykasoğlu and T. Dereli

2

kizx

mkzWx

Pbaxkxk

mkCxt

ix

ts

z

kik

kk

Wi

ik

UB

LBk

UB

LBk

bkak

wi

iki

UB

LBk

ik

m

k

k

k

a

a

b

b

k

i

i

,}1,0{,

,...,10

),(0)()(

,...,1)(

1

..

min

max

max

1

max

∀∈

=≤−

∈∀≤−

=≤

∀=

∑

∑ ∑

∑

∑

∑

∈

= =

∈

=

=

 (1)

iUB : upper bound on the station to which i may be assigned (iS : set of all successors of i),

+

∈

+−+= ∑ CttNUB

iSj

jii /)(1

iLB : lower bound on the station to which i may be assigned (iP : set of all predecessors of i),

+

∈

+= ∑ CttLB

iPj

jii /)(

where; C: Cycle time, mmax: predetermined maximum number of stations; Wk: subset of

all tasks that can be assigned to station k; ||Wk||: number of tasks in set Wk; LBi: earliest

station task i can be assigned to (given precedence relations); UBi: latest station task i

can be assigned to (given precedence relations); P: set of tasks that precedes from a task,

xik: 1 if task i is assigned to workstation k, 0 otherwise; zk: 1, if there is any task

assigned to workstation k, 0 otherwise. The first constraint assures that a task cannot be

assigned to more than one workstation and must be assigned to a workstation. The

second constraint ensures that the cycle time is not violated. The third constraint ensures

that the precedence relationships are satisfied. The fourth constraint ensures that

assignments are made to the open stations. Finally, the objective function of the

formulation is to minimize the number of workstations (or line efficiency).

The assembly line balancing problem (ALBP) can be divided into two groups,

according to the classification proposed by Baybars [3]: Simple Assembly Line

Balancing (SALBP) and General Assembly Line Balancing (GALBP). The first group

determines the tasks assigned to a set of workstations with the same cycle time; each

task has a deterministic duration and must be performed in only one of the workstations.

Two goals can be considered in addition to the precedence relations between the tasks:

the minimization of the number of workstations for a given cycle time (SALBP-I) and

the minimization of the cycle time for a given number of workstations (SALBP-II). Any

other variation of the problem is included in the second group. U type assembly line

Simple and U-Type Assembly Line Balancing

3

balancing is one of the generalizations of the simple assembly line balancing problem

that is studied in this paper. The U-shaped ALBP is introduced and modeled by

Miltenburg and Wijngaard [27]. SALBP-I can be solved with greedy heuristics, based

on the application of priority rules to assign the tasks to the workstations. The rules

consider such aspects as the duration of the tasks, the number of tasks after a given one,

the constraints on the minimum number of workstations to assign tasks, etc., or even a

mixture of these aspects. The rules are used to establish an ordered list with the possible

tasks, so in each selection the most suitable task (according to the chosen rule) can be

chosen. A traditional line organizes stations and the tasks that comprise them

sequentially along a straight line. In a U-shaped line, tasks are arranged around a U

shape line and are organized into stations that can cross from one side of the line to the

other. The assignment of the tasks to the stations on a U-line exploits the geometry of

the line to keep the return and crossover distances as small as possible. Consequently,

total travel distance and, hence, travel time is less on a U-shaped line. This is shown

with the U-shaped layout in Figure 1 where operator one (WS-2) performs tasks (2, 3)

on the front side of the line, travels to the back side to complete tasks (9, 8), and then

returns to the front side of the line to begin the next cycle. As it can be seen from Figure

1, the U-shaped line allows more possibilities on how to assign tasks to workstations;

the number of stations needed for a U-shaped line layout is never more than the number

of stations needed for the traditional straight line [1]. The reason for this is that in the

traditional assembly line balancing problem, for a given workstation, the set of possible

assignable tasks is conformed by those tasks whose predecessors have already been

assigned to workstations, whereas in the U-shaped line problem the set of assignable

tasks is determined by all those tasks whose predecessors or successors have already

been assigned [1]. Note that a traditional line can be considered a special case of the U-

line. The geometry of U-shaped line is presented in Figure 1.

Figure 1. U-shaped assembly line

As mentioned previously, solving large scale ALBP optimally by using exact and

classical optimization procedures is very difficult. To overcome the difficulties imposed

by the classical techniques, researchers recently developed effective heuristics to solve

the ALBPs. Most of these heuristics are based on genetic algorithms, tabu search and

simulated annealing. In each of these heuristics, different strategies are used to represent

ALBP solutions and neighbor generation mechanisms. Kim et al. [24], Chan et al. [6],

Sabuncuoglu et al. [28], Goncalves and Almeida [18] developed genetic algorithms

based heuristics for simple ALBP. Chiang [7], Scholl and Voss [30] applied tabu search

heuristic to solve simple ALBP. Boctor [4] proposed several heuristic procedures for

solving simple ALBP. Helgeson and Birnie [22] proposed the well known ranked

positional weight task assignment heuristic for ALB problems. Ajenblit and Wainwright

A. Baykasoğlu and T. Dereli

4

[1] developed genetic algorithms based heuristics for solving U-shaped ALBPs. Erel et

al. [16] proposed a simulated annealing procedure for U-shaped ALBP. Scholl and

Klein [32] proposed several effective heuristic procedures for balancing U-shaped lines.

McMullen and Tarasewich [26] recently proposed an ant colony based algorithm for

ALBPs with parallel workstations, stochastic task durations, and mixed-models. After

the literature review, it is observed that genetic algorithms are more frequently used in

modeling and solving simple and U-shaped ALBPs than the other meta-heuristics. The

number of studies on U-shaped ALBPs is limited in comparison to simple ALBPs.

In this research paper, an ACO based algorithm is proposed for solving simple and

U-shaped ALBPs with the aim of maximizing the line performance (or minimizing the

number of workstations). The proposed method integrates COMSOAL algorithm [2]

and Ranked Positional Weight Heuristic [22] within an ACO based heuristic. The

proposed algorithm is tested and compared with several literature test problems with

different cycle times. The proposed algorithm found promising solutions for each

problem in short computational times.

2. ANT COLONY BASED ALGORITHM FOR SIMPLE AND U-TYPE ALBP

ACO algorithms are becoming popular approaches for solving combinatorial

optimization problems in the literature. They were first introduced by Dorigo et al. [10-

12]. Several sophisticated versions have been proposed to improve its performance. For

a comprehensive review on ant algorithms, refer to Dorigo, Bonabeau and Theraulaz

[14]. The ant system has been applied to the job shop scheduling problem by Colorni et

al. [8], to the graph colouring problem by Costa and Hertz [9], to the quadratic

assignment problem by Maniezzo [25] and to the vehicle routing problem by

Bullnheimer et al. [5]. The fundamental idea of ACO heuristics is based on the

behaviour of natural ants that succeed in finding the shortest paths from their nest to

food sources by communicating via a collective memory that consists of pheromone

trails. Due to ant’s weak global perception of its environment, an ant moves essentially

at random when no pheromone is available. However, it tends to follow a path with a

high pheromone level when many ants move in a common area, which leads to an

autocatalytic process. Finally, the ant does not choose its direction based on the level of

pheromone exclusively, but also takes the proximity of the nest and of the food source

respectively into account. This allows the discovery of new and potentially shorter

paths. The described behavioural mechanism can be used to solve combinatorial

optimization problems by simulation, with artificial ants searching the solution space

instead of real ants searching their environment. In addition to this, the objective values

correspond to the quality of the discovered food and an adaptive memory is the

equivalent of the pheromone trails [13]. To guide their search through the set of feasible

solutions, the artificial ants are furthermore equipped with a local heuristic function.

The ant colony heuristic approach, like, genetic algorithms and simulated annealing, is

attractive to many researchers since its optimization scheme is based on natural

metaphors. But we should mention here that for successful application of the ant

algorithms to the optimization problems, it should be easy and/or possible to define (or

present) the solution space as a network (or graph). Luckily solution spaces of most of

the combinatorial optimization problems especially the ones with binary decision

Simple and U-Type Assembly Line Balancing

5

variables like the ALBP can be described (and/or mapped) graphically and solution

procedures based on networks can be developed. In the following sub-sections, we will

present the application of the ACO to the simple and U-shaped ALBP. In the proposed

algorithm search mechanisms of simple and U-shaped lines are nearly same. The main

difference is in the selection of task for possible workstation assignment. In the

following sub-section the simple case is described first, afterwards the differences

between simple and U-shaped lines are explained. The following notation is used in

developing the ACO based algorithm:

n : Number of task

cs : Ant colony size

m : Index for ant (csm ≤≤1)

i : Index for task (ni ≤≤1)

k : Index for station (zk ≤≤1)

cl={} : Candidate task(s) list.

nc : Number of candidate task in candidate list.

tf : Total pheromone quantity

gf(i,k) : Global pheromone quantity for assigning i
th
 task to k

th
 station

pw(i) : i
th
 task positional weight

r(i) : i
th
 task selection probability

p(i) : Cumulative probability (il→)

x(m,i,k) : Binary decision variable (1, If i
th
 task is assigned to k

th
 station by m

th

ant; 0, otherwise)

xb(i,k) : Binary decision variable (representing the best solution)

of(m) : m
th
 ant’s objective function value

α : Important rates of global pheromone quantity of decision 10 ≤<α

β : Important rates of decision without pheromone 10 ≤< β

δ : Important rates of positional weight* 101 <≤ δ
* Positional weight of a task is determined based on the cumulative assembly time associated

with itself and its successors. Tasks are then assigned in this order to the lowest numbered

feasible workstation [34].

Steps of the ACO based algorithm

The steps of the proposed algorithm are given in the following pseudo code.

Start

 Repeat

 1) Set initial values, start iteration.

Repeat

 2) Create a new ant m=m+1;

 Repeat

 3) Open k
th
 station, k=k+1;

 4) Form the initial candidate task(s) list.

 cl={1,…,nc}

 Repeat

5) Determine all task(s) selection

probability in the candidate list according

to the global pheromone quantities and

positional weight values of the tasks.

A. Baykasoğlu and T. Dereli

6

∑
∈

=
n

cli

kigftf),(, ∑
∈

=
n

cli

ipwtpw)(

[(,)* [()* /]]
()

((*) (*))

gf i k pw i tpw
r i i cl

tf nc

α δ β
α β δ

+ +
= ∈

+ +

6) Choose a task randomly from the list,

according to the selection probability.

() (1) () 1... ,p l p l r i l nc i cl= − + = ∈

(0)0(=p , 1)(=ncp)

Randomly generate)1,0(∈q

Choose the i
th
 task whose cumulative

probability satisfy)()1(lpqlp <≤− rule.

7) Assign the selected task to the k
th
 station

and update the candidate according to the

remaining time. 1),,(=kimx

8) Deposit pheromone for the chosen task and

assigned station.),(),,(),(kigfkimxkigf +=

 Until (Candidate list is empty)

 Until (All the tasks are assigned to the stations)

9) Calculate the objective function value if it is better

than the global optimum then update the best solution as m
th

ant’s solution and global optimum as m
th
 ant’s objective

function.

IF of(m)<best solution THEN best solution = of(m)

∀ task(i) and station(k);),,(),(kimxkixb =

Until (Ant number reaches to ant colony size)

For non-improving ant(s). Evaporate the pheromone:

Average Objective Function (aof)=]/))([(
1

csmof
cs

m

∑
=

IF aofmof >)(THEN ∀ task(i) and

station(k):),,(),(),(kimxkigfkigf −=

Until (Iteration number reaches to iteration limit)

 Save the best solution.

End

Only the step 4 of the proposed algorithm that is outlined above is modified in

order to solve U-shaped line. In the case of U-shaped lines task assignment to

workstations can be made from both ends of the precedence graphs. Therefore, in

forming candidate list for task assignment, (in step 4) immediate predecessors and

immediate successor are determined by scanning both ends of the precedence diagram.

Other steps are identical. Opening a station and forming the feasible candidate lists for

possible assignment in steps 3 and 4 is the COMSOAL process. In the original

COMSOAL process task selection for station assignment is made randomly, however in

ACO process this is achieved by pheromone quantity update and ranked positional

weight values as shown in step 5. This is the process of integrating ACO with

COMSOAL [2] and Ranked Positional Weight [22] heuristics. An example is given

here in order to show some of the solution steps of the proposed algorithm. The

precedence diagram for example problem is shown in Figure 2. The cycle time is set to

70 and optimal solution is 3 workstations. The positional weights are shown in Table 1.

Simple and U-Type Assembly Line Balancing

7

1

111115

12119

874

1032

6

20 6 5

21

8 35

15 10

15

5

46 16

Figure 2. Precedence diagram for the 12-task example problem

Table 1. Positional weights of the tasks

Task No Positional

Weight

Task No Positional

Weight

Task

No

Positional

Weight

1 138 5 85 9 77

2 118 6 97 10 67

3 112 7 102 11 62

4 123 8 87 12 16

Some of the steps of the proposed algorithm for the simple line case are given as follows:

Steps 1-3: α=1, β=1, δ=10; m=1; k=1,
Step 4 : Candidate list: cl={1, 4, 5, 6}, nc=4

Step 5 : gf(1,1)=gf(4,1)=gf(5,1)=gf(6,1)=0 ⇒ tf=0

 tpw =138+123+85+97=443

 r(1)=[gf(1,1)*1+[138*10/443]+1]/[(1*0)+(1*4)+10]=0.29,

 r(4)=0.27, r(5)=0.21, r(6)=0.23

Step 6 : 1→p(1)=0.29, 4→p(2)=0.56, 5→p(3)=0.77, 6→p(4)=1

 q=0.705 ⇒ p(2)<q<p(3)⇒ p(3)→ 5th task is assigned to 1st

 station

Step 7 : x(1,5,1)=1

Step 8 : gf(5,1)=gf(5,1)+x(1,5,1)=1

Assume that tasks 5,4,1,2,3,10 are assigned to the 1
st
station by continuing the same

procedure;
x(1,4,1)=1, gf(4,1)=1; x(1,1,1)=1, gf(1,1)=1; x(1,2,1)=1,

gf(2,1)=1; x(1,3,1)=1, gf(3,1)=1; x(1,10,1)=1, gf(10,1)=1

1st workstation remaining time=70-(8+21+20+6+5+5)=5, there isn’t any

task left which can be assigned to the 1
st
 station, so a new station is opened. k=k+1,

k=2. The other tasks are assigned by using the same procedure. After all tasks are

assigned, the best solution is updated if an ant finds a better solution than the global

optimum solution and so on.

3. COMPUTATIONAL STUDY

In order to present the efficiency of the proposed ACO based algorithm, two sets

of test problem are solved. In the first set, there are 64 test problems and these problems

are collected by Talbot et al. [34]. In the second set there are 168 test problems and

A. Baykasoğlu and T. Dereli

8

these problems are collected by Scholl [29]. The proposed algorithm is programmed in

Visual Basic in a Pentium III-MMX model PC at 450 MHz (128 MB RAM). All of

these test problems are available in http://www.assembly-line-balancing.de/. The ACO

parameters α, β, δ are usually set to 1,1,10. The results for the first set of problem are

tabulated in Table 2. The results for the second set of problems are tabulated in Table 3.

In Table 4 a comparison is also given with the branch-and–bound algorithm of Scholl

and Klein [31]. There are several other papers that also solved U-type ALB problems

but these papers tested their algorithms with only Talbot et al.’s data set [34]. We

exclude these comparisons from this paper as most of the algorithms are successful with

Talbot et al.’s data set [34].

Table 2. Results for the simple and U type ALBP (Talbot et al.’s data set [34])

Problem

Name

Cycle

Time

Known

optimum for

simple line

ACO

Simple

Result

ACO

U-line

Result

ACO Simple

Computational

Time

ACO U-line

Computational

Time
Mitchell 15 8 8 8 0,1 0,6

 14 8 8 8 0,1 0,01

 21 5 5 5 0,1 3,29

 26 5 5 5 0,1 0,01

 35 3 3 3 1 0,11

 39 3 3 3 0,1 0,6

Arcus 111 5755 27 27 27 4 40,1

 8847 18 18 18 2 2,97

 10027 16 16 16 2 2,91

 10743 15 15 15 5 2,96

 11378 14 14 14 3 2,91

 17067 9 9 9 4 2,91

Arcus 83 5048 16 16 16 2 1,31

 5853 14 14 14 0,1 1,27

 6842 12 12 12 1 1,26

 7571 11 11 11 1 1,32

 8412 10 10 10 0,1 1,26

 8898 9 9 9 0,1 1,32

 10816 8 8 8 0,1 1,26

Tonge 176 21 21 21 5 0,82

 364 10 10 10 0,1 0,83

 410 9 9 9 0,1 0,77

 468 8 8 8 0,1 0,82

 527 7 7 7 0,1 0,82

K.&Wester 57 10 10 10 0,1 0,22

 79 7 7 7 0,1 154

 92 6 6 6 3 36,2

 110 6 6 6 0,1 0,28

 138 4 4 4 5 0,76

 184 3 3 3 1 2,8

Mansoor 48 4 4 4 0,02 0,42

 62 3 3 3 0,03 0,44

 94 2 2 2 0,01 0,01

Sawyer 25 14 14 14 1 0,49

 27 13 13 13 1 0,6

 30 12 12 12 0,1 0,11

 36 10 10 10 0,1 0,11

 41 8 8 8 0,1 2,89

 54 7 7 7 0,1 0,11

 75 5 5 5 0,1 0,6

Heskiaoff 138 8 8 8 0,1 0,11

 205 5 5 5 3 6,98

 216 5 5 5 0,1 0,5

 256 4 4 4 0,1 9,34

Simple and U-Type Assembly Line Balancing

9

 324 4 4 4 0,1 0,6

 342 3 3 3 0,1 2,8

Jackson 7 8 8 7 0,1 0,2

 9 6 6 6 0,1 0,01

 10 5 5 5 0,1 0,01

 13 4 4 4 1 0,01

 14 4 4 4 0,1 0,01

 21 3 3 3 0,1 0,01

Jaeschke 6 8 8 8 0,1 0,01

 7 7 7 7 0,1 0,01

 8 6 6 6 0,1 0,5

 10 4 4 4 0,1 0,01

 18 3 3 3 0,1 0,01

Bowman 20 5 5 4 0,1 0,3

Merten 6 6 6 6 0,1 0,01

 7 5 5 5 0,1 0,01

 8 5 5 5 0,1 0,6

 10 3 3 3 0,1 0,01

 15 2 2 2 0,1 0,01

 18 2 2 2 0,1 0,01

As it can be seen from Table 4 the proposed ACO algorithm is very successful

with Talbot et al.’s data set [34]. The algorithm found all of the optimal solutions with

small computational times. The ACO algorithm is also effective with Scholl’s data set

[29]. Although the number of optimal solutions found by ACO for the simple ALB is

relatively smaller than FABLE, FEUR and FSLM, the computational time requirements

are smaller than the compared algorithms. The performance of ACO for U-lines is also

comparable to branch-and bound algorithms. ACO U-line is able to reach good

solutions with small smaller computational times.

Table 3. Results for the simple and U type ALBP (Scholl’s data set [29])

Problem
Name

Cycle
Time

Known
optimum

for

simple
line

ACO
Simple

Result

ACO
U-line

Result

ACO
Simple

Comp.

Time

ACO
U-line

Compt.

Time

Problem
Name

Cycle
Time

Known
optimum

for

simple
line

ACO
Simple

Result

ACO
U-line

Result

ACO
Simple

Comp.

Time

ACO
U-line

Compt.

Time

BARTHOL2 84 51 53 53 27,93 364,89 WARNECKE 54 31 33 32 2,11 23,12

 85 50 53 53 27,94 364,41 56 29 31 31 2,08 22,92

 87 49 52 51 28,02 93,74 58 29 31 30 2,10 22,94

 89 48 50 50 28,01 93,43 60 27 30 29 2,09 22,91

 91 47 49 49 27,92 93,51 62 27 29 28 2,08 22,88

 93 46 49 48 28,05 93,39 65 25 28 27 2,09 22,91

 95 45 47 47 27,89 93,40 68 24 26 25 2,08 22,90

 97 44 46 46 27,91 93,42 71 23 25 24 2,08 22,94

 99 43 45 45 27,93 93,37 74 22 23 23 2,07 22,89

 101 42 45 44 28,02 93,35 78 21 22 21 2,08 8,52

 104 41 43 43 27,93 93,48 82 20 21 20 2,08 1,91

 106 40 42 42 27,98 93,39 86 19 20 19 2,08 3,50

 109 39 41 41 27,91 93,38 92 17 19 18 2,09 22,87

 112 38 40 39 27,89 93,43 97 17 17 17 0,96 1,67

 115 37 39 39 27,94 93,48 104 15 16 16 2,09 22,92

 118 36 38 37 27,98 93,46 111 14 15 15 2,08 22,92

 121 35 37 37 28,02 93,58 WEEMAG 28 63 63 63 0,46 0,76

 125 34 35 35 27,91 93,39 29 63 63 63 0,39 0,62

 129 33 34 34 27,90 93,57 30 62 62 62 0,80 8,42

 133 32 33 33 27,96 93,59 31 62 62 62 0,33 0,63

 137 31 32 32 27,95 93,44 32 61 61 61 0,53 2,80

 142 30 31 31 27,93 93,51 33 61 61 61 0,14 1,12

 146 29 30 30 27,86 93,57 34 61 61 61 0,15 0,62

 152 28 29 29 27,97 93,48 35 60 60 60 0,21 2,57

 157 27 28 28 27,97 93,44 36 60 60 60 0,14 0,63

 163 26 27 27 28,00 93,53 37 60 60 60 0,14 0,62

 170 25 26 26 28,12 93,50 38 60 60 60 0,14 0,62

BUXEY 27 13 14 13 0,37 0,39 39 60 60 60 0,14 0,63

A. Baykasoğlu and T. Dereli

10

 30 12 12 12 0,03 0,70 40 60 60 60 0,14 0,62

 33 11 11 11 0,03 0,12 41 59 59 59 0,21 0,63

 36 10 10 10 0,02 0,50 42 55 55 55 0,15 1,10

 41 8 8 9 0,29 3,23 43 50 50 50 0,26 0,62

 47 7 8 7 0,37 2,44 45 38 39 39 4,39 48,48

 54 7 7 7 0,01 0,50 46 34 36 37 4,17 48,53

GUNTHER 41 14 14 14 0,45 0,14 47 33 34 34 4,18 48,53

 44 12 12 12 0,03 0,30 49 32 33 32 4,23 4,00

 49 11 11 11 0,03 0,15 50 32 32 32 0,12 1,80

 54 9 10 10 0,57 5,43 52 31 32 31 4,22 24,37

 61 9 9 9 0,03 0,80 54 31 31 31 0,17 0,60

 69 8 8 8 0,03 0,14 56 30 30 31 0,69 48,72

 81 7 7 7 0,01 0,80 BARTHOLD 403 14 15 15 28,06 364,52

LUTZ1 1414 11 11 11 0,10 0,80 434 13 14 14 28,05 365,27

 1572 10 10 10 0,06 0,70 470 12 13 13 28,07 365,28

 1768 9 9 9 0,03 0,70 513 11 12 12 28,10 365,32

 2020 8 8 8 0,02 0,80 564 10 11 11 28,06 365,29

 2357 7 7 7 0,01 0,60 626 9 10 10 28,07 365,30

 2828 6 6 6 0,03 0,70 705 8 9 9 28,05 365,27

LUTZ2 11 49 51 50 6,63 79,76 805 7 8 8 28,09 365,30

 12 44 48 46 6,62 79,76 HAHN 2004 8 8 8 0,06 0,28

 13 40 43 41 6,60 79,75 2338 7 8 7 1,65 0,25

 14 37 39 37 6,61 36,79 2806 6 6 6 0,05 0,26

 15 34 35 34 6,60 10,59 3507 5 5 5 0,06 0,26

 16 31 34 33 6,64 79,73 4676 4 4 4 0,06 0,26

 17 29 31 30 6,60 79,60 SCHOLL 1394 50 53 52 209,07 2982

 18 28 29 29 6,60 79,81 1422 50 52 51 209,03 2982

 19 26 27 27 6,60 79,58 1452 48 51 50 208,88 789,80

 20 25 26 25 6,60 49,53 1483 47 50 49 208,91 789,00

 21 24 25 24 6,61 71,82 1515 46 48 48 208,71 789,10

LUTZ3 75 23 24 23 6,57 2,10 1548 46 47 47 208,63 788,97

 79 22 23 22 6,57 2,66 1584 44 46 45 208,51 789,11

 83 21 22 21 6,57 1,87 1620 44 45 44 208,08 286,10

 87 20 21 20 6,57 2,64 1659 42 44 43 208,44 788,53

 92 19 19 19 3,59 1,85 1699 42 43 42 208,58 19,16

 97 18 18 18 0,21 1,70 1742 40 42 41 208,53 788,47

 103 17 17 17 0,41 1,70 1787 39 41 40 208,64 788,80

 110 15 16 16 6,55 79,68 1834 38 40 39 208,95 788,97

 118 14 15 15 6,58 79,68 1883 37 39 38 208,87 788,98

 127 14 14 14 0,40 1,60 1935 36 38 37 208,70 789,12

 137 13 13 13 0,21 1,60 1991 35 37 36 208,87 789,10

 150 12 12 12 0,21 1,70 2049 34 35 35 208,46 789,10

MUKHERJE 176 25 26 25 7,73 37,71 2111 33 34 34 208,46 789,30

 183 24 25 24 7,81 4,89 2177 32 33 33 208,57 789,40

 192 23 24 23 7,82 1,16 2247 31 32 32 209,18 19,30

 201 22 23 22 7,80 2,10 2322 30 31 31 208,63 19,21

 211 21 22 21 7,82 2,11 2402 29 30 30 209,24 19,26

 222 20 21 20 7,80 2,10 2488 28 29 29 209,39 19,20

 234 19 19 19 2,51 1,17 2580 27 28 28 209,35 19,20

 248 18 18 18 0,67 1,17 2680 26 27 27 209,36 19,21

 263 17 17 17 0,32 1,17 2787 25 26 26 209,15 19,20

 281 16 16 16 0,32 1,17 ROSZIEG 14 10 10 10 0,02 0,70

 301 15 15 15 0,21 1,17 16 8 9 8 0,25 0,28

 324 14 14 14 0,21 1,17 18 8 8 8 0,01 0,30

 351 13 13 13 0,21 1,17 21 6 6 6 0,02 0,70

 25 6 6 6 0,00 0,40

 32 4 4 4 0,02 0,40

5. CONCLUSIONS

In this paper, a new algorithm is developed for solving simple and U-shaped

ALBPs. The proposed algorithm integrates COMSOAL method, Ranked Positional

Weight heuristic and an ACO based heuristic. The algorithm is able quickly search

effective solutions for simple and U-shaped ALBPs. The performance of the proposed

algorithm is tested with several test problems from the literature. In most of the runs, the

proposed algorithm found optimal solutions in short computational times. It is

concluded after this research that the proposed ACO is an eligible meta-heuristic for

solving ALBPs. The ACO algorithm can also be used to optimize other types of

Simple and U-Type Assembly Line Balancing

11

assembly lines like parallel lines, two sided assembly lines with some problem specific

modifications. This is scheduled as a future work. Application of the proposed heuristic

to stochastic and mixed model assembly line balancing problems can also be considered

as a useful future work.

Table 4. Comparison of results with Scholl and Klein’s Branch-and-Bound algorithms;

FABLE, FEUR and FSLM [29]

 Talbot et al. [34] (64 inst.) Scholl [29] (128 inst.)

 FABLE FEUR FSLM
ACO

Simple

ACO

U-Line
FABLE FEUR FSLM

ACO

Simple

ACO

U-Line

of Opt.

Results
64 63 64 64 64 80 69 100 59 82

Avg.

CPU(sec.)
0.2 9 0.5 0.77 4.6 267.1 333.4 209.3 39.53 153.3

REFERENCES

1. D.A. Ajenblit, R.L. Wainwright, Applying genetic algorithms to the U-shaped

 assembly line balancing problem. Proceedings of the 1998 IEEE International

 Conference on Evolutionary Computation, Anchorage, Alaska, pp. 96-101, 1998.

2. A.L. Arcus, COMSOAL: A computer method of sequencing operations for

 assembly lines, International Journal of Production Research 4, 259-277, 1966.

3. I. Baybars, A survey of exact algorithms for the simple assembly line balancing

 Problem, Management Science 32, 909-932, 1986.

4. F.F. Boctor, A multiple-rule heuristic for assembly line balancing, Journal of

 Operational Research Society 46, 62–69, 1995.

5. B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank-based version of the ant

 system: a computational study, Central European Journal of Operations Research

 and Economics 7, 25-38, 1999.

6. K.C.C. Chan, P.C.L. Hui, K.W. Yeung, F.S.F. Ng, Handling the assembly line

 balancing problem in the clothing industry using a genetic algorithm, International

 Journal of Clothing Science and Technology 10, 21-37, 1998.

7. W-C. Chiang, The application of a tabu search metaheuristic to the assembly line

 balancing problem, Annals of Operations Research 77, 209-227, 1998.

8. A. Colorni, M. Dorigo, V. Maniezzo, M. Trubian, Ant system for job-shop

 Scheduling, JORBEL-Belgian Journal of Operations Research, Statistics and

 Computer Science 34, 39-53, 1994.

9. D. Costa, A. Hertz, Ants can color graphs, Journal of the Operational Research

 Society 48, 295-305, 1997.

10. M. Dorigo, V. Maniezzo, A. Colorni, Positive feedback as a search strategy,

 Technical Report, 91-016, Politecnico idi Milano, 1991.

11. M. Dorigo, Ottimizzazione, apprendimento automatico, ed algoritmi basati su

 metafora naturale (Optimization, Learning and Natural Algorithms), Ph.D.Thesis,

 Politecnico di Milano, Italy, in Italian, 1992.

12. M. Dorigo, V. Maniezzo, A., Colorni, The ant system: optimization by a colony of

 cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics-Part B

 26, 29-41, 1996.

A. Baykasoğlu and T. Dereli

12

13. M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms for discrete

 optimization, Artificial Life 5, 137-72, 1999.

14. M. Dorigo, E. Bonabeau, G. Theraulaz, Ant algorithm and stigmergy, Future

 Generation Computer Systems 16, 851-871, 2000.

15. E.A. Elsayed, T.O. Boucher, Analysis and Control of Production Systems, New

 Jersey: Prentice Hall, 1994.

16. E. Erel, I. Sabuncuoglu, B.A. Aksu, Balancing of U-type assembly systems using

 simulated annealing, Int. Journal of Production Research 39, 3003-3015, 2001

17. S. Ghosh, R.J. Gagnon, A comprehensive literature review and analysis of the

 design, balancing and scheduling of assembly lines, International Journal of

 Production Research 27, 637-670, 1989.

18. J.F. Goncalves, J.R.D. Almeida, A hybrid genetic algorithm for assembly line

 Balancing, Journal of Heuristics 8, 629–642, 2002.

19. H. Gokcen, E. Erel, Binary integer formulation for mixed model assembly line

 balancing problem, Computers and Industrial Engineering 34, 451-461, 1998.

20. H. Gokcen, K. Agpak, C. Gencer, E. Kizilkaya, A shortest route formulation of

 simple U-type assembly line balancing problem, Applied Mathematical Modelling

 29, 373-380, 2005.

21. H. Gokcen, K. Agpak, A goal programming approach to simple U-line balancing

 Problem, European Journal of Operational Research 171, 577-585, 2006.

22. W. Helgeson, D. Birnie, Assembly line balancing using the ranked positional

 weight Technique, Journal of Industrial Engineering 12, 394–398, 1961.

23. R.M. Karp, Reducibility Among Combinatorial Problems, New York, 1972.

24. Y.J. Kim, Y.K. Kim, Y. Cho, A heuristic-based genetic algorithm for workload

 smoothing in assembly lines, Computers & Operations Research 25, 99-111,1998.

25. V. Maniezzo, Exact and approximate non-deterministic tree-search procedures

 for the quadratic assignment problem, Research Report, CSR 98-1, Scienze

 dell'Informazione, University Di Bologna, Sede Di Cesena, Italy, 1998.

26. P.R. McMullen, P. Tarasewich, Using ant techniques to solve the assembly line

 balancing problem, IIE Transactions 35, 605–617, 2003.

27. G.J. Miltenburg, J. Wijngaard, The U-line line balancing problem, Management

 Science 40, 1378-1988, 1994.

28. I. Sabuncuoglu, E. Erel, M. Tanyer, Assembly line balancing using genetic

 Algorithms, Journal of Intelligent Manufacturing 11, 95-310, 2000.

29. A. Scholl, Data of Assembly Line Balancing Problems, Schriften zur

 Quantitativen Betriebswirtschaftslehre 16/93, TU Darmstadt, 1993.

30. A. Scholl, S. Voss, Simple assembly line balancing-heuristic approaches, Journal

 of Heuristics, 2, 217–244, 1996.

31. A. Scholl, R. Klein, SALOME: A bidirectional branch-and-bound procedure for

 assembly line balancing, INFORMS Journal on Computing 9, 319-334, 1997.

32. A. Scholl, R. Klein, ULINO: Optimally balancing U-shaped JIT assembly lines,

 International Journal of Production Research 37, 721-736, 1999.

33. A. Scholl, C. Becker, State-of-the-art exact and heuristic solution procedures for

 simple assembly line balancing, Eur. J. of Oper. Research 168, 666-693, 2006.

34. F.B. Talbot, J.H. Patterson, W.V. Gehrlein, A comparative evaluation of heuristic

 Line balancing techniques, Management Science 32, 430-454, 1986.

