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Abstract- In this paper, an Ant Colony Optimization (ACO) based heuristic algorithm 

is proposed for solving simple (straight line) and U-shaped assembly line balancing 

problems (ALBP). The paper makes one of the first attempts to show how ACO 

heuristic can be used to solve U-shaped ALBP. A new algorithm is proposed in this 

paper that seamlessly integrates COMSOAL algorithm, Ranked Positional Weight 

Heuristic (RPWH) and an ACO based heuristic in order to obtain good solutions to 

simple and U-shaped ALBPs. The result of the computational study has shown that the 

proposed algorithm is effective in solving simple/U-shaped line balancing problems. 
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1. INTRODUCTION 

 

ALBP relates to a finite set of work elements or tasks, each having an operation 

processing time and a set of precedence relations, which specify the permissible 

orderings of the tasks. One of the problems in organizing mass production is how to 

group work tasks to be performed on workstations so as to achieve the desired level of 

performance. Line balancing is an attempt to allocate equal amounts of work to the 

various workstations along the line. The fundamental line-balancing problem is how to 

assign a set of tasks to an ordered set of workstations, such that the precedence relations 

are satisfied and some measure of performance is optimized [17]. When designing an 

assembly line there are two main restrictions that must be imposed on the grouping of 

work elements [15]. Precedence relationship; The cycle time is greater than or equal to 

the maximum of any station time and of the time of any work element. The station time 

must not exceed the cycle time.  

The ALBP as defined above is known as a NP-hard problem [23] and it is 

formally given in Equation set 1 [19]. Equation set 1 represents the type of 

mathematical problem that is tried to be solved. Mathematical formulations for the U-

shaped ALBPs can also be found in Gokcen et al. [20], Gokcen and Agpak [21]. If there 

are n tasks and r precedence requirements then there are roughly n!/2
r
 possible tasks 

sequences in a simple ALBP [3]. With such a vast search space it is difficult to obtain 

an optimal solution for big size problems by using deterministic algorithms. Many 

attempts have been made in the literature to solve the ALB problem with exact 

deterministic methods. Some of these methods have proven to be efficient for the 

problems up to 300 tasks. But for larger problems their practical use is limited due to 

their computational inefficiency. Baybars [3] and Talbot et al. [34] reviewed and 

evaluated these different approaches. 
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where; C: Cycle time, mmax: predetermined maximum number of stations; Wk: subset of 

all tasks that can be assigned to station k; ||Wk||: number of tasks in set Wk; LBi: earliest 

station task i can be assigned to (given precedence relations); UBi: latest station task i 

can be assigned to (given precedence relations); P: set of tasks that precedes from a task, 

xik: 1 if task i is assigned to workstation k, 0 otherwise; zk: 1, if there is any task 

assigned to workstation k, 0 otherwise. The first constraint assures that a task cannot be 

assigned to more than one workstation and must be assigned to a workstation. The 

second constraint ensures that the cycle time is not violated. The third constraint ensures 

that the precedence relationships are satisfied. The fourth constraint ensures that 

assignments are made to the open stations. Finally, the objective function of the 

formulation is to minimize the number of workstations (or line efficiency). 

The assembly line balancing problem (ALBP) can be divided into two groups, 

according to the classification proposed by Baybars [3]: Simple Assembly Line 

Balancing (SALBP) and General Assembly Line Balancing (GALBP). The first group 

determines the tasks assigned to a set of workstations with the same cycle time; each 

task has a deterministic duration and must be performed in only one of the workstations. 

Two goals can be considered in addition to the precedence relations between the tasks: 

the minimization of the number of workstations for a given cycle time (SALBP-I) and 

the minimization of the cycle time for a given number of workstations (SALBP-II). Any 

other variation of the problem is included in the second group. U type assembly line 
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balancing is one of the generalizations of the simple assembly line balancing problem 

that is studied in this paper. The U-shaped ALBP is introduced and modeled by 

Miltenburg and Wijngaard [27]. SALBP-I can be solved with greedy heuristics, based 

on the application of priority rules to assign the tasks to the workstations. The rules 

consider such aspects as the duration of the tasks, the number of tasks after a given one, 

the constraints on the minimum number of workstations to assign tasks, etc., or even a 

mixture of these aspects. The rules are used to establish an ordered list with the possible 

tasks, so in each selection the most suitable task (according to the chosen rule) can be 

chosen. A traditional line organizes stations and the tasks that comprise them 

sequentially along a straight line. In a U-shaped line, tasks are arranged around a U 

shape line and are organized into stations that can cross from one side of the line to the 

other. The assignment of the tasks to the stations on a U-line exploits the geometry of 

the line to keep the return and crossover distances as small as possible. Consequently, 

total travel distance and, hence, travel time is less on a U-shaped line. This is shown 

with the U-shaped layout in Figure 1 where operator one (WS-2) performs tasks (2, 3) 

on the front side of the line, travels to the back side to complete tasks (9, 8), and then 

returns to the front side of the line to begin the next cycle. As it can be seen from Figure 

1, the U-shaped line allows more possibilities on how to assign tasks to workstations; 

the number of stations needed for a U-shaped line layout is never more than the number 

of stations needed for the traditional straight line [1]. The reason for this is that in the 

traditional assembly line balancing problem, for a given workstation, the set of possible 

assignable tasks is conformed by those tasks whose predecessors have already been 

assigned to workstations, whereas in the U-shaped line problem the set of assignable 

tasks is determined by all those tasks whose predecessors or successors have already 

been assigned [1]. Note that a traditional line can be considered a special case of the U-

line. The geometry of U-shaped line is presented in Figure 1. 
 

 
Figure 1. U-shaped assembly line 

 

As mentioned previously, solving large scale ALBP optimally by using exact and 

classical optimization procedures is very difficult. To overcome the difficulties imposed 

by the classical techniques, researchers recently developed effective heuristics to solve 

the ALBPs. Most of these heuristics are based on genetic algorithms, tabu search and 

simulated annealing. In each of these heuristics, different strategies are used to represent 

ALBP solutions and neighbor generation mechanisms. Kim et al. [24], Chan et al. [6], 

Sabuncuoglu et al. [28], Goncalves and Almeida [18] developed genetic algorithms 

based heuristics for simple ALBP. Chiang [7], Scholl and Voss [30] applied tabu search 

heuristic to solve simple ALBP. Boctor [4] proposed several heuristic procedures for 

solving simple ALBP. Helgeson and Birnie [22] proposed the well known ranked 

positional weight task assignment heuristic for ALB problems. Ajenblit and Wainwright 
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[1] developed genetic algorithms based heuristics for solving U-shaped ALBPs. Erel et 

al. [16] proposed a simulated annealing procedure for U-shaped ALBP. Scholl and 

Klein [32] proposed several effective heuristic procedures for balancing U-shaped lines. 

McMullen and Tarasewich [26] recently proposed an ant colony based algorithm for 

ALBPs with parallel workstations, stochastic task durations, and mixed-models. After 

the literature review, it is observed that genetic algorithms are more frequently used in 

modeling and solving simple and U-shaped ALBPs than the other meta-heuristics. The 

number of studies on U-shaped ALBPs is limited in comparison to simple ALBPs. 

In this research paper, an ACO based algorithm is proposed for solving simple and 

U-shaped ALBPs with the aim of maximizing the line performance (or minimizing the 

number of workstations). The proposed method integrates COMSOAL algorithm [2] 

and Ranked Positional Weight Heuristic [22] within an ACO based heuristic. The 

proposed algorithm is tested and compared with several literature test problems with 

different cycle times. The proposed algorithm found promising solutions for each 

problem in short computational times. 

 

2. ANT COLONY BASED ALGORITHM FOR SIMPLE AND U-TYPE ALBP 

 

ACO algorithms are becoming popular approaches for solving combinatorial 

optimization problems in the literature. They were first introduced by Dorigo et al. [10-

12]. Several sophisticated versions have been proposed to improve its performance. For 

a comprehensive review on ant algorithms, refer to Dorigo, Bonabeau and Theraulaz 

[14]. The ant system has been applied to the job shop scheduling problem by Colorni et 

al. [8], to the graph colouring problem by Costa and Hertz [9], to the quadratic 

assignment problem by Maniezzo [25] and to the vehicle routing problem by 

Bullnheimer et al. [5]. The fundamental idea of ACO heuristics is based on the 

behaviour of natural ants that succeed in finding the shortest paths from their nest to 

food sources by communicating via a collective memory that consists of pheromone 

trails. Due to ant’s weak global perception of its environment, an ant moves essentially 

at random when no pheromone is available. However, it tends to follow a path with a 

high pheromone level when many ants move in a common area, which leads to an 

autocatalytic process. Finally, the ant does not choose its direction based on the level of 

pheromone exclusively, but also takes the proximity of the nest and of the food source 

respectively into account. This allows the discovery of new and potentially shorter 

paths. The described behavioural mechanism can be used to solve combinatorial 

optimization problems by simulation, with artificial ants searching the solution space 

instead of real ants searching their environment. In addition to this, the objective values 

correspond to the quality of the discovered food and an adaptive memory is the 

equivalent of the pheromone trails [13]. To guide their search through the set of feasible 

solutions, the artificial ants are furthermore equipped with a local heuristic function. 

The ant colony heuristic approach, like, genetic algorithms and simulated annealing, is 

attractive to many researchers since its optimization scheme is based on natural 

metaphors. But we should mention here that for successful application of the ant 

algorithms to the optimization problems, it should be easy and/or possible to define (or 

present) the solution space as a network (or graph). Luckily solution spaces of most of 

the combinatorial optimization problems especially the ones with binary decision 
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variables like the ALBP can be described (and/or mapped) graphically and solution 

procedures based on networks can be developed. In the following sub-sections, we will 

present the application of the ACO to the simple and U-shaped ALBP. In the proposed 

algorithm search mechanisms of simple and U-shaped lines are nearly same. The main 

difference is in the selection of task for possible workstation assignment. In the 

following sub-section the simple case is described first, afterwards the differences 

between simple and U-shaped lines are explained. The following notation is used in 

developing the ACO based algorithm: 
 

n : Number of task 

cs : Ant colony size 

m : Index for ant ( csm ≤≤1 ) 

i : Index for task ( ni ≤≤1 ) 

k : Index for station ( zk ≤≤1 ) 

cl={} : Candidate task(s) list.  

nc : Number of candidate task in candidate list. 

tf : Total pheromone quantity 

gf(i,k) : Global pheromone quantity for assigning i
th
 task to k

th
 station 

pw(i) : i
th
 task positional weight 

r(i) : i
th
 task selection probability 

p(i) : Cumulative probability ( il→ ) 

x(m,i,k) : Binary decision variable (1, If i
th
 task is assigned to k

th
 station by m

th
 

ant; 0, otherwise) 

xb(i,k) : Binary decision variable (representing the best solution) 

of(m) : m
th
 ant’s objective function value 

α : Important rates of global pheromone quantity of decision 10 ≤<α  

β : Important rates of decision without pheromone 10 ≤< β  

δ : Important rates of positional weight* 101 <≤ δ  
* Positional weight of a task is determined based on the cumulative assembly time associated 

with itself and its successors. Tasks are then assigned in this order to the lowest numbered 

feasible workstation [34]. 

 

Steps of the ACO based algorithm  

The steps of the proposed algorithm are given in the following pseudo code.   
 

Start 

 Repeat  

  1) Set initial values, start iteration. 

Repeat 

 2) Create a new ant m=m+1; 

 Repeat 

  3) Open k
th
 station, k=k+1;   

  4) Form the initial candidate task(s) list.  

                       cl={1,…,nc} 

  Repeat 

5) Determine all task(s) selection 

probability in the candidate list according 

to the global pheromone quantities and 

positional weight values of the tasks. 
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6) Choose a task randomly from the list, 

according to the selection probability.   

( ) ( 1) ( ) 1... ,p l p l r i l nc i cl= − + = ∈      

( 0)0( =p  , 1)( =ncp ) 

Randomly generate )1,0(∈q  

Choose the i
th
 task whose cumulative 

probability satisfy )()1( lpqlp <≤−  rule. 

7) Assign the selected task to the k
th
 station 

and update the candidate according to the 

remaining time. 1),,( =kimx  

8) Deposit pheromone for the chosen task and 

assigned station. ),(),,(),( kigfkimxkigf +=  

  Until (Candidate list is empty) 

 Until (All the tasks are assigned to the stations) 

9) Calculate the objective function value if it is better 

than the global optimum then update the best solution as m
th
 

ant’s solution and global optimum as m
th
 ant’s objective 

function. 

IF of(m)<best solution THEN best solution = of(m)  

∀ task(i) and station(k); ),,(),( kimxkixb =  

Until (Ant number reaches to ant colony size) 

For non-improving ant(s). Evaporate the pheromone:  

Average Objective Function (aof)= ]/))([(
1

csmof
cs

m

∑
=

 

IF aofmof >)(  THEN ∀ task(i) and 

station(k): ),,(),(),( kimxkigfkigf −=  

Until (Iteration number reaches to iteration limit) 

 Save the best solution. 

End 

 

Only the step 4 of the proposed algorithm that is outlined above is modified in 

order to solve U-shaped line. In the case of U-shaped lines task assignment to 

workstations can be made from both ends of the precedence graphs. Therefore, in 

forming candidate list for task assignment, (in step 4) immediate predecessors and 

immediate successor are determined by scanning both ends of the precedence diagram.   

Other steps are identical. Opening a station and forming the feasible candidate lists for 

possible assignment in steps 3 and 4 is the COMSOAL process. In the original 

COMSOAL process task selection for station assignment is made randomly, however in 

ACO process this is achieved by pheromone quantity update and ranked positional 

weight values as shown in step 5. This is the process of integrating ACO with 

COMSOAL [2] and Ranked Positional Weight [22] heuristics. An example is given 

here in order to show some of the solution steps of the proposed algorithm. The 

precedence diagram for example problem is shown in Figure 2. The cycle time is set to 

70 and optimal solution is 3 workstations. The positional weights are shown in Table 1. 
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Figure 2. Precedence diagram for the 12-task example problem 

 

Table 1. Positional weights of the tasks 
 

Task No Positional 

Weight 

Task No Positional 

Weight 

Task 

No 

Positional 

Weight 

1 138 5 85 9 77 

2 118 6 97 10 67 

3 112 7 102 11 62 

4 123 8 87 12 16 

 

Some of the steps of the proposed algorithm for the simple line case are given as follows: 

 
Steps 1-3: α=1, β=1, δ=10; m=1; k=1,  
Step 4   : Candidate list: cl={1, 4, 5, 6}, nc=4 

Step 5   : gf(1,1)=gf(4,1)=gf(5,1)=gf(6,1)=0 ⇒ tf=0 

            tpw =138+123+85+97=443 

            r(1)=[gf(1,1)*1+[138*10/443]+1]/[(1*0)+(1*4)+10]=0.29, 

            r(4)=0.27, r(5)=0.21, r(6)=0.23 

Step 6   : 1→p(1)=0.29, 4→p(2)=0.56, 5→p(3)=0.77, 6→p(4)=1 

            q=0.705 ⇒ p(2)<q<p(3)⇒ p(3)→ 5th  task is assigned to 1st   

                   station 

Step 7   : x(1,5,1)=1 

Step 8   : gf(5,1)=gf(5,1)+x(1,5,1)=1  

 

Assume that tasks 5,4,1,2,3,10 are assigned to the 1
st 
station by continuing the same 

procedure;   
x(1,4,1)=1, gf(4,1)=1; x(1,1,1)=1, gf(1,1)=1; x(1,2,1)=1, 

gf(2,1)=1; x(1,3,1)=1, gf(3,1)=1; x(1,10,1)=1, gf(10,1)=1 

1st workstation remaining time=70-(8+21+20+6+5+5)=5, there isn’t any 

task left which can be assigned to the 1
st
 station, so a new station is opened. k=k+1, 

k=2. The other tasks are assigned by using the same procedure. After all tasks are 

assigned, the best solution is updated if an ant finds a better solution than the global 

optimum solution and so on. 
 

3. COMPUTATIONAL STUDY 

 

In order to present the efficiency of the proposed ACO based algorithm, two sets 

of test problem are solved. In the first set, there are 64 test problems and these problems 

are collected by Talbot et al. [34]. In the second set there are 168 test problems and 
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these problems are collected by Scholl [29]. The proposed algorithm is programmed in 

Visual Basic in a Pentium III-MMX model PC at 450 MHz (128 MB RAM). All of 

these test problems are available in http://www.assembly-line-balancing.de/. The ACO 

parameters α, β, δ are usually set to 1,1,10. The results for the first set of problem are 

tabulated in Table 2.  The results for the second set of problems are tabulated in Table 3. 

In Table 4 a comparison is also given with the branch-and–bound algorithm of Scholl 

and Klein [31]. There are several other papers that also solved U-type ALB problems 

but these papers tested their algorithms with only Talbot et al.’s data set [34]. We 

exclude these comparisons from this paper as most of the algorithms are successful with 

Talbot et al.’s data set [34]. 

 

Table 2. Results for the simple and U type ALBP (Talbot et al.’s data set [34]) 
 

Problem 

Name 

Cycle  

Time 

Known 

optimum for 

simple line 

ACO 

Simple 

Result 

ACO  

U-line 

Result 

ACO Simple 

Computational 

Time 

ACO U-line 

Computational 

Time 
Mitchell 15 8 8 8 0,1 0,6 

  14 8 8 8 0,1 0,01 

  21 5 5 5 0,1 3,29 

  26 5 5 5 0,1 0,01 

  35 3 3 3 1 0,11 

  39 3 3 3 0,1 0,6 

Arcus 111 5755 27 27 27 4 40,1 

  8847 18 18 18 2 2,97 

  10027 16 16 16 2 2,91 

  10743 15 15 15 5 2,96 

  11378 14 14 14 3 2,91 

  17067 9 9 9 4 2,91 

Arcus 83 5048 16 16 16 2 1,31 

  5853 14 14 14 0,1 1,27 

  6842 12 12 12 1 1,26 

  7571 11 11 11 1 1,32 

  8412 10 10 10 0,1 1,26 

  8898 9 9 9 0,1 1,32 

  10816 8 8 8 0,1 1,26 

Tonge 176 21 21 21 5 0,82 

  364 10 10 10 0,1 0,83 

  410 9 9 9 0,1 0,77 

  468 8 8 8 0,1 0,82 

  527 7 7 7 0,1 0,82 

K.&Wester 57 10 10 10 0,1 0,22 

  79 7 7 7 0,1 154 

  92 6 6 6 3 36,2 

  110 6 6 6 0,1 0,28 

  138 4 4 4 5 0,76 

  184 3 3 3 1 2,8 

Mansoor 48 4 4 4 0,02 0,42 

  62 3 3 3 0,03 0,44 

  94 2 2 2 0,01 0,01 

Sawyer 25 14 14 14 1 0,49 

  27 13 13 13 1 0,6 

  30 12 12 12 0,1 0,11 

  36 10 10 10 0,1 0,11 

  41 8 8 8 0,1 2,89 

  54 7 7 7 0,1 0,11 

  75 5 5 5 0,1 0,6 

Heskiaoff 138 8 8 8 0,1 0,11 

  205 5 5 5 3 6,98 

  216 5 5 5 0,1 0,5 

  256 4 4 4 0,1 9,34 
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  324 4 4 4 0,1 0,6 

  342 3 3 3 0,1 2,8 

Jackson 7 8 8 7 0,1 0,2 

  9 6 6 6 0,1 0,01 

  10 5 5 5 0,1 0,01 

  13 4 4 4 1 0,01 

  14 4 4 4 0,1 0,01 

  21 3 3 3 0,1 0,01 

Jaeschke 6 8 8 8 0,1 0,01 

  7 7 7 7 0,1 0,01 

  8 6 6 6 0,1 0,5 

  10 4 4 4 0,1 0,01 

  18 3 3 3 0,1 0,01 

Bowman 20 5 5 4 0,1 0,3 

Merten 6 6 6 6 0,1 0,01 

  7 5 5 5 0,1 0,01 

  8 5 5 5 0,1 0,6 

  10 3 3 3 0,1 0,01 

  15 2 2 2 0,1 0,01 

  18 2 2 2 0,1 0,01 

 

As it can be seen from Table 4 the proposed ACO algorithm is very successful 

with Talbot et al.’s data set [34]. The algorithm found all of the optimal solutions with 

small computational times. The ACO algorithm is also effective with Scholl’s data set 

[29]. Although the number of optimal solutions found by ACO for the simple ALB is 

relatively smaller than FABLE, FEUR and FSLM, the computational time requirements 

are smaller than the compared algorithms. The performance of ACO for U-lines is also 

comparable to branch-and bound algorithms. ACO U-line is able to reach good 

solutions with small smaller computational times. 

 

Table 3. Results for the simple and U type ALBP (Scholl’s data set [29]) 
 
 

Problem 
Name 

Cycle  
Time 

Known 
optimum 

for 

simple 
line 

ACO 
Simple 

Result 

ACO 
U-line 

Result 

ACO 
Simple 

Comp. 

Time 

ACO 
U-line 

Compt. 

Time 

Problem 
Name 

Cycle  
Time 

Known 
optimum 

for 

simple 
line 

ACO 
Simple 

Result 

ACO 
U-line 

Result 

ACO 
Simple 

Comp. 

Time 

ACO 
U-line 

Compt. 

Time 

BARTHOL2 84 51 53 53 27,93 364,89 WARNECKE 54 31 33 32 2,11 23,12 

 85 50 53 53 27,94 364,41  56 29 31 31 2,08 22,92 

 87 49 52 51 28,02 93,74  58 29 31 30 2,10 22,94 

 89 48 50 50 28,01 93,43  60 27 30 29 2,09 22,91 

 91 47 49 49 27,92 93,51  62 27 29 28 2,08 22,88 

 93 46 49 48 28,05 93,39  65 25 28 27 2,09 22,91 

 95 45 47 47 27,89 93,40  68 24 26 25 2,08 22,90 

 97 44 46 46 27,91 93,42  71 23 25 24 2,08 22,94 

 99 43 45 45 27,93 93,37  74 22 23 23 2,07 22,89 

 101 42 45 44 28,02 93,35  78 21 22 21 2,08 8,52 

 104 41 43 43 27,93 93,48  82 20 21 20 2,08 1,91 

 106 40 42 42 27,98 93,39  86 19 20 19 2,08 3,50 

 109 39 41 41 27,91 93,38  92 17 19 18 2,09 22,87 

 112 38 40 39 27,89 93,43  97 17 17 17 0,96 1,67 

 115 37 39 39 27,94 93,48  104 15 16 16 2,09 22,92 

 118 36 38 37 27,98 93,46  111 14 15 15 2,08 22,92 

 121 35 37 37 28,02 93,58 WEEMAG 28 63 63 63 0,46 0,76 

 125 34 35 35 27,91 93,39  29 63 63 63 0,39 0,62 

 129 33 34 34 27,90 93,57  30 62 62 62 0,80 8,42 

 133 32 33 33 27,96 93,59  31 62 62 62 0,33 0,63 

 137 31 32 32 27,95 93,44  32 61 61 61 0,53 2,80 

 142 30 31 31 27,93 93,51  33 61 61 61 0,14 1,12 

 146 29 30 30 27,86 93,57  34 61 61 61 0,15 0,62 

 152 28 29 29 27,97 93,48  35 60 60 60 0,21 2,57 

 157 27 28 28 27,97 93,44  36 60 60 60 0,14 0,63 

 163 26 27 27 28,00 93,53  37 60 60 60 0,14 0,62 

 170 25 26 26 28,12 93,50  38 60 60 60 0,14 0,62 

BUXEY 27 13 14 13 0,37 0,39  39 60 60 60 0,14 0,63 
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 30 12 12 12 0,03 0,70  40 60 60 60 0,14 0,62 

 33 11 11 11 0,03 0,12  41 59 59 59 0,21 0,63 

 36 10 10 10 0,02 0,50  42 55 55 55 0,15 1,10 

 41 8 8 9 0,29 3,23  43 50 50 50 0,26 0,62 

 47 7 8 7 0,37 2,44  45 38 39 39 4,39 48,48 

 54 7 7 7 0,01 0,50  46 34 36 37 4,17 48,53 

GUNTHER 41 14 14 14 0,45 0,14  47 33 34 34 4,18 48,53 

 44 12 12 12 0,03 0,30  49 32 33 32 4,23 4,00 

 49 11 11 11 0,03 0,15  50 32 32 32 0,12 1,80 

 54 9 10 10 0,57 5,43  52 31 32 31 4,22 24,37 

 61 9 9 9 0,03 0,80  54 31 31 31 0,17 0,60 

 69 8 8 8 0,03 0,14  56 30 30 31 0,69 48,72 

 81 7 7 7 0,01 0,80 BARTHOLD 403 14 15 15 28,06 364,52 

LUTZ1 1414 11 11 11 0,10 0,80  434 13 14 14 28,05 365,27 

 1572 10 10 10 0,06 0,70  470 12 13 13 28,07 365,28 

 1768 9 9 9 0,03 0,70  513 11 12 12 28,10 365,32 

 2020 8 8 8 0,02 0,80  564 10 11 11 28,06 365,29 

 2357 7 7 7 0,01 0,60  626 9 10 10 28,07 365,30 

 2828 6 6 6 0,03 0,70  705 8 9 9 28,05 365,27 

LUTZ2 11 49 51 50 6,63 79,76  805 7 8 8 28,09 365,30 

 12 44 48 46 6,62 79,76 HAHN 2004 8 8 8 0,06 0,28 

 13 40 43 41 6,60 79,75  2338 7 8 7 1,65 0,25 

 14 37 39 37 6,61 36,79  2806 6 6 6 0,05 0,26 

 15 34 35 34 6,60 10,59  3507 5 5 5 0,06 0,26 

 16 31 34 33 6,64 79,73  4676 4 4 4 0,06 0,26 

 17 29 31 30 6,60 79,60 SCHOLL 1394 50 53 52 209,07 2982 

 18 28 29 29 6,60 79,81  1422 50 52 51 209,03 2982 

 19 26 27 27 6,60 79,58  1452 48 51 50 208,88 789,80 

 20 25 26 25 6,60 49,53  1483 47 50 49 208,91 789,00 

 21 24 25 24 6,61 71,82  1515 46 48 48 208,71 789,10 

LUTZ3 75 23 24 23 6,57 2,10  1548 46 47 47 208,63 788,97 

 79 22 23 22 6,57 2,66  1584 44 46 45 208,51 789,11 

 83 21 22 21 6,57 1,87  1620 44 45 44 208,08 286,10 

 87 20 21 20 6,57 2,64  1659 42 44 43 208,44 788,53 

 92 19 19 19 3,59 1,85  1699 42 43 42 208,58 19,16 

 97 18 18 18 0,21 1,70  1742 40 42 41 208,53 788,47 

 103 17 17 17 0,41 1,70  1787 39 41 40 208,64 788,80 

 110 15 16 16 6,55 79,68  1834 38 40 39 208,95 788,97 

 118 14 15 15 6,58 79,68  1883 37 39 38 208,87 788,98 

 127 14 14 14 0,40 1,60  1935 36 38 37 208,70 789,12 

 137 13 13 13 0,21 1,60  1991 35 37 36 208,87 789,10 

 150 12 12 12 0,21 1,70  2049 34 35 35 208,46 789,10 

MUKHERJE 176 25 26 25 7,73 37,71  2111 33 34 34 208,46 789,30 

 183 24 25 24 7,81 4,89  2177 32 33 33 208,57 789,40 

 192 23 24 23 7,82 1,16  2247 31 32 32 209,18 19,30 

 201 22 23 22 7,80 2,10  2322 30 31 31 208,63 19,21 

 211 21 22 21 7,82 2,11  2402 29 30 30 209,24 19,26 

 222 20 21 20 7,80 2,10  2488 28 29 29 209,39 19,20 

 234 19 19 19 2,51 1,17  2580 27 28 28 209,35 19,20 

 248 18 18 18 0,67 1,17  2680 26 27 27 209,36 19,21 

 263 17 17 17 0,32 1,17  2787 25 26 26 209,15 19,20 

 281 16 16 16 0,32 1,17 ROSZIEG 14 10 10 10 0,02 0,70 

 301 15 15 15 0,21 1,17  16 8 9 8 0,25 0,28 

 324 14 14 14 0,21 1,17  18 8 8 8 0,01 0,30 

 351 13 13 13 0,21 1,17  21 6 6 6 0,02 0,70 

        25 6 6 6 0,00 0,40 

        32 4 4 4 0,02 0,40 

 

5. CONCLUSIONS 

 

In this paper, a new algorithm is developed for solving simple and U-shaped 

ALBPs. The proposed algorithm integrates COMSOAL method, Ranked Positional 

Weight heuristic and an ACO based heuristic. The algorithm is able quickly search 

effective solutions for simple and U-shaped ALBPs. The performance of the proposed 

algorithm is tested with several test problems from the literature. In most of the runs, the 

proposed algorithm found optimal solutions in short computational times. It is 

concluded after this research that the proposed ACO is an eligible meta-heuristic for 

solving ALBPs. The ACO algorithm can also be used to optimize other types of 
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assembly lines like parallel lines, two sided assembly lines with some problem specific 

modifications. This is scheduled as a future work. Application of the proposed heuristic 

to stochastic and mixed model assembly line balancing problems can also be considered 

as a useful future work.   

 

Table 4. Comparison of results with Scholl and Klein’s Branch-and-Bound algorithms; 

FABLE, FEUR and FSLM [29] 
 

 Talbot et al. [34] (64 inst.) Scholl [29] (128 inst.) 

 FABLE FEUR FSLM 
ACO 

Simple 

ACO   

U-Line 
FABLE FEUR FSLM 

ACO 

Simple 

ACO   

U-Line 

# of Opt. 

Results 
64 63 64 64 64 80 69 100 59 82 

Avg. 

CPU(sec.) 
0.2 9 0.5 0.77 4.6 267.1 333.4 209.3 39.53 153.3 
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