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1. INTRODUCTION 

 

O, Brien [1], Jackson [2], Suzuki [3], Maggu [4] etc. studied the model of 

tandem (series) queues. In 1957 the concept of reneging in queueing system was 

introduced by Barrer [5]. Further this concept has been discussed in different ways by 

many researchers as Haight [6] Blackburn [7] etc. in different models. 

The concept of jockeying was first discussed by Glazer. Then using this concept 

in different models many researchers discussed as Keonigsberg [8], Disney and Mitchell 

[9] etc. The network of queues was studied by Finch [10], Kelly [11], Melamed [12] and 

recently Chandramouli [13] discussed a model in which two bi-tandem channels are 

linked with a common channel taking the concept of non-linear service growth rate. In 

the present paper the concept of reneging and jockeying has  been introduced in this 

model when the service rates do not depend upon the queue length. The steady 

behaviour of this model has been discussed. The practical situation corresponding to 

this model can be realized in banks or in a publishing company etc. For example, 

consider a publishing company which has three types of machines say 1 2,S S  and 3S . 

Let 1S   print the matter in red ink and 2S  in blue ink. and 3S  denote the binding 

machine. We suppose that the arrivals (matters for printing) are printed in two colours 

(red or blue) and finally go to the binding process at 3S . It has also been assumed that 

the binding machine 3S undertakes outside printed matter for binding. Now in this 

situation, the reneging and jockeying at the arrivals may also be observed. 

 

2. FORMULATION AND SOLUTION 

 

Let 1 2,S S  and 3S denote the three service channels in which it is supposed that 

1 2 ,S S� that is 1S  and 2S  are in bi-tandem and 1 3S S→  or 2 3S S→ , that is, each is 

further linked in tandem with 3S . An arriving unit for service at either 1S  or 2S may 

follow one of the following routes for terminal services : 

1 2 3 2 1 3.S S S or S S S→ → → →  

This unit which arrives directly at 3S  departs from the system after servicing at 

3S . Let 1Q , 2Q  and 3Q  be waiting line formed before 1 2,S S and 3S . If they are busy. It 
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has been supposed that an arriving unit after intolerable waiting time in the queue 1Q  or 

2Q may renege (leave) at 1S or 2S without service. Also it has been assumed that units 

may jockey (move) from 1 2Q Q→  or from 2 1Q Q→  for personal economic gains. 

Let λ
i
 denote the Possion mean rate of arrivals at iQ  before iS  (i = 1, 2, 3), we 

assume that the input source is infinite. Let µ
i
 denote the Possion mean departure rates 

at iS . Also let rb  denote the constant rate of reneging from queues rQ  (r = 1, 2). 

Further, let irJ (i ≠  r, i, r = 1, 2) denote the constant rates of jockeying from i rQ Q→ . 

Let 12p  and 13p  denote the probabilities that a unit after service at 1S departs to join the 

respective queues 2Q  and 3Q . Again let 21p  and 23p  denote the probabilities that a unit 

after service at 2S  join the respective queues 1Q  and 3Q , where ijp ≥  0 (i ≠  j,  i = 1, 2, 

j = 1, 2, 3) and 12 13p + p  = 1, 21 23p + p  = 1. Let P (k, m, n) denote the steady-state 

probability that there are waiting k units in 1Q , m units in 2Q  and n units in 3Q . Each 

queue includes service also and k, m, n ≤  0. 
 

Q
1

 
Figure :- Queue model with Reneging and Jockeying 

 

For steady state situation the following difference equation exists for k, m, n > 0 
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If one of k, m, n is zero and other two are non-zero e.g. k = 0, m, n > 0 then in 

this case for P (o, m, n) 1 1 12b = 0 = µ = J  and negative of P (k, m, n) is zero. 

Substituting these value is (1) we get the equation. Similarly for m = 0, n > 0 and also 

for n = 0, k m > 0. We get three equations in this manner. Again, if two of k, m, n are 

zero and other one is non-zero e.g. k = 0 = m, n > 0 then in this case for P (o, o, n), 

1 2 12 21 1 2b = 0 = b = J J µ = µ= =  and negative of P (k, m, n) is zero. Substituting these 

values in (1) we get the equation. Similarly, for k = 0 = n, m > 0 and also m = 0 = n, k > 

0. We get three equations in this manner also. 
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Again, if k, m, n are also zero. Then in this case for P (0, 0, 0), 

1 2 3 1 2 12 21b = 0 = b = b µ = µ J J= = =  and negative of P (k, m, n) in zero and substitute 

these values in (1) we get one equation. 

Hence, the above set of eight difference equations govern the model in steady 

state situation. 

To solve the above set of difference equations we use the generating function 

technique and similar steps as Chandramouli [14] has taken in his paper. Now, define 

the generating function as 

0 0 0

( , , ) ( , , ) | | 1 | | 1 ...........(2.2)k m n

n m k

F x y z P k m n x y z Where x and z
∞ ∞ ∞

= = =

= ≤ ≤∑ ∑ ∑
 

Using the following partial generating functions and simplification 
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We get the following equation : F (x,y,z) = 

( ) ( ) ( )1 13 12 12 0 2 23 21 2 21 0 3 0

1 1
1– – 1– , 1– – 1– 1– , 1– ,

z y y z x x
p p J A y z p p b J B x z I x y

x x x y y y y z
µ µ µ

             
+ + + + +                             

 

( ) ( ) ( )1 2 3 1 2 12 21

1 13 12 2 23 21 3

1 1
1– 1– 1– 1– 1– 1– 1–

1
1– – 1– – 1– .....................(2.5)
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µ µ µ
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    + + +        
 

Using L’ Hospital’s rule for indeterminate form %, and using F (x, 1, 1) = 1 as 

1x →  and similarly other also we have the following set of equations : 

1 13 0 2 23 0 3 0

3 1 13 2 23 3

(1,1) (1,1) (1,1)
1 ...................(2.6)

–

p A p B I
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+ +
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1 1 12 0 2 21 21 0

1 1 12 21 1 2 21

( ) (1,1) – ( ) (1,1)
1 ..................(2.7)

– – –

b J A p J B

b J J p

µ µ
λ µ µ

+ + +
=

+ + +
 

          

1 12 12 0 2 2 21 0

2 2 12 21 1 12 2

–( ) (1,1) – ( ) (1,1)
1 ...................(2.8

– – –

p J A b J B

b J J p

µ µ
λ µ µ
+ + +

=
+ + +

) 

In matrix notations, the equations (2.6), (2.7) and (2.8) can be written as 

AX  =  B;      …………….(2.9) 

3 1 13 2 23

1 1 12 2 21 12

1 12 12 2 2 21

whereA = 0

0

p p

b J p J

p J b J

µ µ µ

µ µ

µ µ

− − 
 + + − − 
 − − + + 

 

0 3 1 13 2 23 3

0 1 1 12 21 2 21 1

2 2 21 12 1 12 20

(1,1) –

(1,1) – – –

– – –(1,1)

I p p

X A and B b J J p

b J J pB

λ µ µ µ

λ µ µ

λ µ µ

− − +   
   = = + + +   
   + + +  

 

The augmented matrix [A : B] after the elementary row transformation, 

1 12 12
3 3 2

1 1 12

becomes
p J

R R R
b J

µ
µ

 +
→ +  + + 

 

[ ]
3 1 13 2 23 3 1 13 2 23 3

1 1 12 2 21 21 1 1 2 21 12 21 1

: –

A :B 0 : – – – ......(2.10)

0 0 : –

p p p p

b J p J p J J b

M M N

µ µ µ λ µ µ µ

µ µ λ µ µ

− − − − + 
 ≈ + + − − + + + 
  

 

Where M 

( )1 2 12 21 2 12 23 1 21 13 1 2 2 1 2 12 1 21 1 21– p p J p J p b b b J b J b bµ µ µ µ µ µ= + + + + + + +  

And ( ) ( )1 1 12 12 2 1 12 1N p J J bλ µ λ µ= + + + +  

By matrix algebra, the system of equation (2.9) are consistent. Thus, the value of 

three unknowns 0 0 0(1,1), (1,1) and (1,1)B A I , after simplification are as follows : 

( ) ( )1 1 12 21 2 1 1 21

0 (1,1) 1– ,
p J b J

B
M

λ µ λ µ+ + + +
=  

( ) ( )1 2 2 21 2 2 21 21

0 (1,1) 1– ,
b J p J

A
M

λ µ λ µ+ + + +
=  

( ) ( ) ( ) ( )

( )
23 12 21 2 13 21 12 10 1 21 231 2 1 13 2 12 23 2 1 2 1 21 13 2 23 3

1 2 12 21 1 21 13 2 12 23 1 2 1 2 2 12 1 21 1 2 3

} }(1,1) 1– { {

1 }/{

[

]

p p p J b p J p p p p J p J b pand I

p p J p J p b b b J b J bb M

µ µ µ λ µ µ µ λλ µ µ

µ µ µ µ µ µ µ

+ + + + + + + + + +=

− + + + + + + +

……………….(2.11) 

 

Now, the steady state solution of M/M/1, when there are h persons (including service) in 

the queue is given by : 
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0 0

0

(1 – )

(1 – ) 1with h 0

h

hp p p

p and
λ

ρ ρ
µ

=

= = < ≥
   …..(2.12) 

Now, if , ,k m np q r  denote the probabilities that there are k units in 1Q , m units in 

2Q  and n units in 3Q  and since in our model all the probability distribution are mutually 

independent, therefore, the joint probability that there are k units in 1Q , m units in 2Q  

and n units in 3Q , including service, if any, in the system is given by : 

( , , ) k m nP k m n p q r=          ….. (2.13) 

Hence, by virtue of (12) we have : 

0 0 0(1 – ) , converge if 1 – 1k

k kP p p p p= <         ……(2.14) 

and similarly andm nq r  also. 

Now, using (2.13) and (2.14), we obtain 

0 0 0 0 0 0( , , ) (1– ) (1– ) (1– )k m nP k m n p q r p q r=         …..(2.15) 

Where 0 0 0, , 0p q r >  

Now, 0 (1,1)A denotes the marginal probability generating function (m.p.g.f.) of 0 

units in 1Q  when 2Q  and 3Q  have been eliminated from the consideration in the 

system. Similarly 0 (1,1)B and 0 (1,1)I  for consideration in the system. Therefore, we can 

easily see that : 

0 0 0 0 0 0(1,1) , (1,1) and (1,1)A p B q I r= = =     ……(2.16) 

Therefore, using (2.11) and (2.16) the steady state solution in (15) can be written 

as  

1 2 3( , , ) (0,0,0) k m nP k m n P ρ ρ ρ=                  

…..(2.17) 

 

1 2 2 21 2 2 21 21
1

( ) ( )b J p J
Where

M

λ µ λ µ
ρ

+ + + +
=  

             1 12 12 12 2 1 1 12
2

( ) ( )p J b J

M

µ µ λ µ
ρ

+ + + +
=  

 3 1 1 2 13 12 23 1 21 2 13 2 12 23[ { ( ) ( ) }p p p J b p J pρ λ µ µ µ µ= + + + + +  

 2 1 2 23 21 13 2 21 13 2 23 12 1 3 3{ ( ) ( )} ] /p p p J p p J b M Mλ µ µ µ µ λ µ+ + + + +  

1 2 12 21 2 12 23 1 21 13 2 1 12 1 1 2 21where (1– ) ( ) ( ),M p p J p J p b J b b Jµ µ µ µ µ µ= + + + + + + +

 1 2 3with (0,0,0) (1– ) (1– ) (1– )P ρ ρ ρ=     ….(2.18) 

Under the assumption that 0 0 0, , 0p q r >  otherwise (2.17) may diverge to∞ . 

The marginal probability P (k . .) of k units are in waiting and in service in 1Q  

can be obtained by using the value of P (k, m, n) from (17) in the formula : 

0 0

( ..) ( , , )
n m

P k P k m n
∞ ∞

= =

= ∑ ∑  
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1 2 3

0 0

(0,0,0) k m n

n m

P ρ ρ ρ
∞ ∞

= =

= ∑ ∑  

1 1(1– ), 0,1, 2k for kρ ρ= =       ………(2.19) 

Similarly, the marginal probabilities P (. m .) of m units in Q2 and P (. . n) of n 

units in 3Q  are 

2 2(. .) (1 – ), 0,1, 2... andmP m for mρ ρ= =  

3 3 1 2 3(.. ) (1– ), 0,1,2... Q , Q QnP n for mρ ρ= =  

 

 

3. SOME CHARACTERISTICS OF THE SYSTEM 

 

3.1. Mean queue length : It is denoted by L and is equal to the sum of marginal queue 

lengths of the queues 1 2Q , Q  and 3Q  which are denoted by 1 2L , L   and 3L  

respectively. 

Hence, 1 2 3L = L + L + L       …….(3.1) 

Now, the marginal queue length 1L  in the queue 1Q  is obtained by the formula 

1

0

L ( ..)
k

kP k
∞

=

= ∑  

Using (2.19) for P (k . .) in the above relation and simplifying, we have 

1
1

1

L
1–

ρ
ρ

=         …….(3.2) 

Similarly, the marginal mean queue lengths 2L  and 3L  for the queues, 2Q  and 

3Q  respectively are : 

2
2

2

L
1–

ρ
ρ

=         …….(3.3) 

And  3
3

3

L
1–

ρ
ρ

=        …….(3.4) 

Now, using (21), (22) and (23) in (20), we have 

31 2

1 2 3

L
1– 1– 1–

ρρ ρ
ρ ρ ρ

= + +       ……(3.5) 

Where 1 2,P P   and 3P  are defined in (17), 

 

3.2. Fluctuation in the queue length : Fluctuation is denoted by Var θ  for 
k m nθ = + +  and is evaluated as  

2

0 0 0

( – ) ( , , )
k m n

Var L k m nθ θ ρ
∞ ∞ ∞

= = =

= ∑ ∑ ∑  

2 2

0 0 0

( ) ( , , ) –
k m n

k m n k m n Lρ
∞ ∞ ∞

= = =

= + +∑ ∑ ∑     ……..(3.6) 
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using ρ  (k, m, n), from (2.17) in (3.6) and the value of L from (3.5), we have 

2 2

1 2 3

0 0 0

(0,0,0) ( ) –k m n

k m n

Var P k m n Lθ ρ ρ ρ
∞ ∞ ∞

= = =

= + +∑ ∑ ∑  

2
3 3

2
1 1

(1– )
–

(1– ) 1–

i i i

i ii i

ρ ρ ρ
ρ ρ= =

 
=  

 
∑ ∑      …….(3.7) 

 

4. PARTICULAR CASES 

 

Case-I.   If we take 3 1 2 12 21 12 210 b b J J p pλ = = = = = = =  

Then, equation (3.5) becomes  1 2 1 2

1 1 2 2 3 1 2– – – ( )
L

λ λ λ λ
µ λ µ λ µ λ λ

+
= + +

+
…(4.1) 

 Which coincides with the result given by Maggu [4]. 

Case-II.  If we consider, 2 3 1 2 12 21 21 120 and 1b b J J p pλ λ= = = = = = = =   with 

3µ → ∞  in the equation (3.5), 
we have : 

1 2

1 1 2 1– –
L

λ λ
µ λ µ λ

= +                           ….(4.2) 

This result coincides with the result given by Jackson [2]. 

Case-III. If we assume 2 3 1 2 12 21 120 and 1b b J J pλ λ= = = = = = =  with 

 3µ → ∞  in equation (2.17), we have 

1 1 1 1

1 21 2 21 1 21 2 21

( , ) 1– 1–
(1– ) (1– ) (1– ) (1– )

k m

P k m
p p p p

λ λ λ λ
µ µ µ µ

       
=        

       
 .(4.3) 

This results gives the solution of the cyclic queues with terminal feedback which 

was given by Finch [10]. 
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