NETWORK OF TANDEM AND BI-TANDEM QUEUEING PROCESS WITH RENEGING AND JOCKEYING

A.B. Chandramouli
Department of P.G. Studies and Research in Mathematics, M.S. College, Saharanpur 247001, India

Abstract

The steady state behaviour of a queueing model where two bi-tandem channels are linked in tandem with a common channel has been studied using the concept of reneging and jockeying.

Keywords - Reneging, Jockeying, Bi-tandem channels.

1. INTRODUCTION

O, Brien [1], Jackson [2], Suzuki [3], Maggu [4] etc. studied the model of tandem (series) queues. In 1957 the concept of reneging in queueing system was introduced by Barrer [5]. Further this concept has been discussed in different ways by many researchers as Haight [6] Blackburn [7] etc. in different models.

The concept of jockeying was first discussed by Glazer. Then using this concept in different models many researchers discussed as Keonigsberg [8], Disney and Mitchell [9] etc. The network of queues was studied by Finch [10], Kelly [11], Melamed [12] and recently Chandramouli [13] discussed a model in which two bi-tandem channels are linked with a common channel taking the concept of non-linear service growth rate. In the present paper the concept of reneging and jockeying has been introduced in this model when the service rates do not depend upon the queue length. The steady behaviour of this model has been discussed. The practical situation corresponding to this model can be realized in banks or in a publishing company etc. For example, consider a publishing company which has three types of machines say S_{1}, S_{2} and S_{3}. Let S_{1} print the matter in red ink and S_{2} in blue ink. and S_{3} denote the binding machine. We suppose that the arrivals (matters for printing) are printed in two colours (red or blue) and finally go to the binding process at S_{3}. It has also been assumed that the binding machine S_{3} undertakes outside printed matter for binding. Now in this situation, the reneging and jockeying at the arrivals may also be observed.

2. FORMULATION AND SOLUTION

Let S_{1}, S_{2} and S_{3} denote the three service channels in which it is supposed that $S_{1} \square \quad S_{2}$, that is S_{1} and S_{2} are in bi-tandem and $S_{1} \rightarrow S_{3}$ or $S_{2} \rightarrow S_{3}$, that is, each is further linked in tandem with S_{3}. An arriving unit for service at either S_{1} or S_{2} may follow one of the following routes for terminal services :

$$
S_{1} \rightarrow S_{2} \rightarrow S_{3} \text { or } S_{2} \rightarrow S_{1} \rightarrow S_{3} .
$$

This unit which arrives directly at S_{3} departs from the system after servicing at S_{3}. Let Q_{1}, Q_{2} and Q_{3} be waiting line formed before S_{1}, S_{2} and S_{3}. If they are busy. It
has been supposed that an arriving unit after intolerable waiting time in the queue Q_{1} or Q_{2} may renege (leave) at S_{1} or S_{2} without service. Also it has been assumed that units may jockey (move) from $Q_{1} \rightarrow Q_{2}$ or from $Q_{2} \rightarrow Q_{1}$ for personal economic gains.

Let λ_{i} denote the Possion mean rate of arrivals at Q_{i} before $S_{i}(i=1,2,3)$, we assume that the input source is infinite. Let μ_{i} denote the Possion mean departure rates at S_{i}. Also let b_{r} denote the constant rate of reneging from queues $Q_{r}(\mathrm{r}=1,2)$. Further, let $J_{i r}(\mathrm{i} \neq \mathrm{r}, \mathrm{i}, \mathrm{r}=1,2)$ denote the constant rates of jockeying from $Q_{i} \rightarrow Q_{r}$. Let p_{12} and p_{13} denote the probabilities that a unit after service at S_{1} departs to join the respective queues Q_{2} and Q_{3}. Again let p_{21} and p_{23} denote the probabilities that a unit after service at S_{2} join the respective queues Q_{1} and Q_{3}, where $\mathrm{p}_{\mathrm{ij}} \geq 0(\mathrm{i} \neq \mathrm{j}, \mathrm{i}=1,2$, $\mathrm{j}=1,2,3)$ and $\mathrm{p}_{12}+\mathrm{p}_{13}=1, \mathrm{p}_{21}+\mathrm{p}_{23}=1$. Let $\mathrm{P}(\mathrm{k}, \mathrm{m}, \mathrm{n})$ denote the steady-state probability that there are waiting k units in $Q_{1}, \mathrm{~m}$ units in Q_{2} and n units in Q_{3}. Each queue includes service also and $\mathrm{k}, \mathrm{m}, \mathrm{n} \leq 0$.

Figure :- Queue model with Reneging and Jockeying
For steady state situation the following difference equation exists for $\mathrm{k}, \mathrm{m}, \mathrm{n}>0$

$$
\begin{align*}
& \left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\mu_{1}+\mu_{2}+\mu_{3}+b_{1}+b_{2}+J_{12}+J_{21}\right) P(k, m, n)=\lambda_{1} P(k-1, m, n) \\
& +\lambda_{2} P(k, m-1, n)+\lambda_{3} P(k, m, n-1)+b_{1}(k+1, m, n)+b_{2} P(k, m+1, n) \\
& +J_{12} P(k+1, m-1, n)+J_{21} P(k-1, m+1, n)+\mu_{1} p_{12} P(k+1, m-1, n)+\mu_{1} \\
& p_{13} P(k+1, m, n-1)+\mu_{2} p_{21}(k-1, m+1, n)+\mu_{2} p_{23} P(k, m+1, n-1) \\
& +\mu_{3} P(k, m, n+1) \quad \text { for } k, m, n>0 \tag{2.1}
\end{align*}
$$

If one of k, m, n is zero and other two are non-zero e.g. $k=0, m, n>0$ then in this case for $P(0, m, n) b_{1}=0=\mu_{1}=J_{12}$ and negative of $P(k, m, n)$ is zero. Substituting these value is (1) we get the equation. Similarly for $m=0, n>0$ and also for $\mathrm{n}=0, \mathrm{~km}>0$. We get three equations in this manner. Again, if two of $\mathrm{k}, \mathrm{m}, \mathrm{n}$ are zero and other one is non-zero e.g. $\mathrm{k}=0=\mathrm{m}, \mathrm{n}>0$ then in this case for $\mathrm{P}(\mathrm{o}, \mathrm{o}, \mathrm{n})$, $b_{1}=0=b_{2}=J_{12}=J_{21}=\mu_{1}=\mu_{2}$ and negative of $P(k, m, n)$ is zero. Substituting these values in (1) we get the equation. Similarly, for $k=0=n, m>0$ and also $m=0=n, k>$ 0 . We get three equations in this manner also.

Again, if k, m, n are also zero. Then in this case for $P(0,0,0)$, $\mathrm{b}_{1}=0=\mathrm{b}_{2}=\mathrm{b}_{3}=\mu_{1}=\mu_{2}=\mathrm{J}_{12}=\mathrm{J}_{21}$ and negative of $\mathrm{P}(\mathrm{k}, \mathrm{m}, \mathrm{n})$ in zero and substitute these values in (1) we get one equation.

Hence, the above set of eight difference equations govern the model in steady state situation.

To solve the above set of difference equations we use the generating function technique and similar steps as Chandramouli [14] has taken in his paper. Now, define the generating function as

$$
\begin{equation*}
F(x, y, z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} P(k, m, n) x^{k} y^{m} z^{n} \text { Where }|x| \leq 1 \text { and }|z| \leq 1 . \tag{2.2}
\end{equation*}
$$

Using the following partial generating functions and simplification

$$
\begin{array}{ll}
F_{m, n}(x)=\sum_{k=0}^{\infty} & P(k, m, n) x^{k} \\
G_{k, n}(y)=\sum_{m=0}^{\infty} & P(k, m, n) y^{m} \\
I_{n}(x, y)=\sum_{m=0}^{\infty} & F_{m, n}(x) y^{m} \\
A_{k}(y, z)=\sum_{n=0}^{\infty} & G_{k, n}(y) z^{n} \tag{2.4}\\
B_{m}(x, z)=\sum_{n=0}^{\infty} & F_{m, n}(x) z^{n}
\end{array}
$$

We get the following equation: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=$

$$
\begin{align*}
& {\left[\left\{\mu_{1}\left(1-\frac{z}{x} p_{13}-\frac{y}{x} p_{12}\right)+J_{12}\left(1-\frac{y}{x}\right)\right\} A_{0}(y, z)+\left\{\mu_{2}\left(1-\frac{z}{y} p_{23} \frac{x}{y} p_{21}\right)+b_{2}\left(1-\frac{1}{y}\right)+J_{21}\left(1-\frac{x}{y}\right)\right\} B_{0}(x, z)+\mu_{3}\left(1-\frac{1}{z}\right) I_{0}(x, y)\right]} \\
& {\left[\lambda_{1}(1-x)+\lambda_{2}(1-y)+\lambda_{3}(1-z)+b_{1}\left(1-\frac{1}{x}\right)+b_{2}\left(1-\frac{1}{y}\right)+J_{12}\left(1-\frac{y}{x}\right)+J_{21}\left(1-\frac{x}{y}\right)\right] /} \\
& +\mu_{1}\left(1-\frac{z}{x} p_{13}-\frac{y}{z} p_{12}\right)+\mu_{2}\left(1-\frac{z}{y} p_{23}-\frac{x}{y} p_{21}\right)+\mu_{3}\left(1-\frac{1}{z}\right) \tag{2.5}
\end{align*}
$$

Using L' Hospital's rule for indeterminate form \%, and using F (x, 1, 1) = 1 as $x \rightarrow 1$ and similarly other also we have the following set of equations :

$$
\begin{equation*}
1=\frac{\mu_{1} p_{13} A_{0}(1,1)+\mu_{2} p_{23} B_{0}(1,1)+\mu_{3} I_{0}(1,1)}{\lambda_{3}+\mu_{1} p_{13}+\mu_{2} p_{23}-\mu_{3}} \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
1=\frac{\left(\mu_{1}+b_{1}+J_{12}\right) A_{0}(1,1)-\left(\mu_{2} p_{21}+J_{21}\right) B_{0}(1,1)}{-\lambda_{1}+b_{1}+J_{12}-J_{21}+\mu_{1}-\mu_{2} p_{21}} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
1=\frac{-\left(\mu_{1} p_{12}+J_{12}\right) A_{0}(1,1)-\left(\mu_{2}+b_{2}+J_{21}\right) B_{0}(1,1)}{-\lambda_{2}+b_{2}-J_{12}+J_{21}-\mu_{1} p_{12}+\mu_{2}} \tag{2.8}
\end{equation*}
$$

In matrix notations, the equations (2.6), (2.7) and (2.8) can be written as

$$
\begin{equation*}
\mathrm{AX}=\mathrm{B} ; \tag{2.9}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \mathrm{A}=\left[\begin{array}{cc}
\mu_{3} & -\mu_{1} p_{13} \\
0 & \mu_{1}+b_{1}+J_{12} \\
0 & -\mu_{1} p_{12}-J_{12} \\
-\mu_{2} p_{23}-J_{12} \\
\mu_{2}+b_{2}+J_{21}
\end{array}\right] \\
& X=\left[\begin{array}{l}
I_{0}(1,1) \\
A_{0}(1,1) \\
B_{0}(1,1)
\end{array}\right] \text { and } B=\left[\begin{array}{l}
-\lambda_{3}-\mu_{1} p_{13}-\mu_{2} p_{23}+\mu_{3} \\
-\lambda_{1}+b_{1}+J_{12}-J_{21}-\mu_{2} p_{21}+\mu_{1} \\
-\lambda_{2}+b_{2}+J_{21}-J_{12}-\mu_{1} p_{12}+\mu_{2}
\end{array}\right]
\end{aligned}
$$

The augmented matrix [A : B] after the elementary row transformation,

$$
\begin{equation*}
R_{3} \rightarrow R_{3}+\left[\frac{\mu_{1} p_{12}+J_{12}}{\mu_{1}+b_{1}+J_{12}}\right] R_{2} \text { becomes } \tag{2.10}
\end{equation*}
$$

$[\mathrm{A}: \mathrm{B}] \approx\left[\begin{array}{llll}\mu_{3} & -\mu_{1} p_{13} & -\mu_{2} p_{23} & :-\lambda_{3}-\mu_{1} p_{13}-\mu_{2} p_{23}+\mu_{3} \\ 0 & \mu_{1}+b_{1}+J_{12} & -\mu_{2} p_{21}-J_{21} & :-\lambda_{1}+\mu_{1}-\mu_{2} p_{21}+J_{12}-J_{21}+b_{1} \\ 0 & 0 & M & : M-N\end{array}\right]$
Where

$$
\begin{gathered}
=\mu_{1} \mu_{2}\left(1-p_{12} p_{21}\right)+\mu_{2} J_{12} p_{23}+\mu_{1} J_{21} p_{13}+\mu_{1} b_{2}+\mu_{2} b_{1}+b_{2} J_{12}+b_{1} J_{21}+b_{1} b_{2} \\
\text { And } N=\lambda_{1}\left(\mu_{1} p_{12}+J_{12}\right)+\lambda_{2}\left(\mu_{1}+J_{12}+b_{1}\right)
\end{gathered}
$$

By matrix algebra, the system of equation (2.9) are consistent. Thus, the value of three unknowns $B_{0}(1,1), A_{0}(1,1)$ and $I_{0}(1,1)$, after simplification are as follows :

$$
\begin{align*}
& B_{0}(1,1)=1-\frac{\lambda_{1}\left(\mu_{1} p_{12}+J_{21}\right)+\lambda_{2}\left(\mu_{1}+b_{1}+J_{21}\right)}{M}, \\
& A_{0}(1,1)=1-\frac{\lambda_{1}\left(\mu_{2}+b_{2}+J_{21}\right)+\lambda_{2}\left(\mu_{2} p_{21}+J_{21}\right)}{M}, \\
& \text { and } I_{0}(1,1)=1-\left[\lambda_{1}\left\{\mu_{1} \mu_{2}\left(p_{21}+p_{23} p_{12}\right)+\mu_{1}\left(J_{21}+b_{2}\right) p_{13}+\mu_{2} J_{12} p_{23}\right\}+\lambda_{2}\left\{\mu_{1} \mu_{2}\left(p_{23}+p_{13} p_{21}\right)+\mu_{1} J_{21} p_{13}+\mu_{2}\left(J_{12}+b_{1}\right) p_{23}\right\}+\lambda_{3}\right. \\
& \left.\left\{\mu_{1} \mu_{2}\left(1-p_{12} p_{21}\right)+\mu_{1} J_{21} p_{13}+\mu_{2} J_{12} p_{23}+b_{1} \mu_{2}+\mu_{1} b_{2}+b_{2} J_{12}+b_{1} J_{21}+b_{1} b_{2}\right\} / \mu_{3} M\right] \tag{2.11}
\end{align*}
$$

Now, the steady state solution of $\mathrm{M} / \mathrm{M} / 1$, when there are h persons (including service) in the queue is given by:

$$
\begin{align*}
& p_{h}=p_{0}\left(1-p_{0}\right)^{h} \\
& p_{0}=(1-\rho) \text { and } \rho=\frac{\lambda}{\mu}<1 \text { with } \mathrm{h} \geq 0 \tag{2.12}
\end{align*}
$$

Now, if p_{k}, q_{m}, r_{n} denote the probabilities that there are k units in $\mathrm{Q}_{1}, \mathrm{~m}$ units in Q_{2} and n units in Q_{3} and since in our model all the probability distribution are mutually independent, therefore, the joint probability that there are k units in Q_{1}, m units in Q_{2} and n units in Q_{3}, including service, if any, in the system is given by :

$$
\begin{equation*}
P(k, m, n)=p_{k} q_{m} r_{n} \tag{2.13}
\end{equation*}
$$

Hence, by virtue of (12) we have :

$$
\begin{equation*}
P_{k}=p_{0}\left(1-p_{0}\right)^{k}, p_{k} \text { converge if } 1-p_{0}<1 \tag{2.14}
\end{equation*}
$$

and similarly q_{m} and r_{n} also.
Now, using (2.13) and (2.14), we obtain

$$
\begin{equation*}
P(k, m, n)=p_{0} q_{0} r_{0}\left(1-p_{0}\right)^{k}\left(1-q_{0}\right)^{m}\left(1-r_{0}\right)^{n} \tag{2.15}
\end{equation*}
$$

Where $p_{0}, q_{0}, r_{0}>0$
Now, $A_{0}(1,1)$ denotes the marginal probability generating function (m.p.g.f.) of 0 units in Q_{1} when Q_{2} and Q_{3} have been eliminated from the consideration in the system. Similarly $B_{0}(1,1)$ and $I_{0}(1,1)$ for consideration in the system. Therefore, we can easily see that :

$$
\begin{equation*}
A_{0}(1,1)=p_{0}, B_{0}(1,1)=q_{0} \text { and } I_{0}(1,1)=r_{0} \tag{2.16}
\end{equation*}
$$

Therefore, using (2.11) and (2.16) the steady state solution in (15) can be written as

$$
\begin{equation*}
P(k, m, n)=P(0,0,0) \rho_{1}^{k} \rho_{2}^{m} \rho_{3}^{n} \tag{2.17}
\end{equation*}
$$

Where $\rho_{1}=\frac{\lambda_{1}\left(\mu_{2}+b_{2}+J_{21}\right)+\lambda_{2}\left(\mu_{2} p_{21}+J_{21}\right)}{M}$

$$
\begin{aligned}
& \rho_{2}=\frac{\mu_{1} p_{12}\left(\mu_{12}+J_{12}\right)+\lambda_{2}\left(\mu_{1}+b_{1}+J_{12}\right)}{M} \\
& \rho_{3}=\left[\lambda_{1}\left\{\mu_{1} \mu_{2}\left(p_{13}+p_{12} p_{23}\right)+\mu_{1}\left(J_{21}+b_{2}\right) p_{13}+\mu_{2} J_{12} p_{23}\right\}+\right. \\
& \left.\lambda_{2}\left\{\mu_{1} \mu_{2}\left(p_{23}+p_{21} p_{13}\right)+\mu_{2} J_{21} p_{13}+\mu_{2} p_{23}\left(J_{12}+b_{1}\right)\right\}+\lambda_{3} M\right] / \mu_{3} M
\end{aligned}
$$

where $\quad M=\mu_{1} \mu_{2}\left(1-p_{12} p_{21}\right)+\mu_{2} J_{12} p_{23}+\mu_{1} J_{21} p_{13}+b_{2}\left(\mu_{1}+J_{12}+b_{1}\right)+b_{1}\left(\mu_{2}+J_{21}\right)$,
with $\quad P(0,0,0)=\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\left(1-\rho_{3}\right)$
Under the assumption that $p_{0}, q_{0}, r_{0}>0$ otherwise (2.17) may diverge to ∞.
The marginal probability $\mathrm{P}(\mathrm{k} .$.$) of \mathrm{k}$ units are in waiting and in service in Q_{1} can be obtained by using the value of $\mathrm{P}(\mathrm{k}, \mathrm{m}, \mathrm{n})$ from (17) in the formula :

$$
P(k . .)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} P(k, m, n)
$$

$$
\begin{align*}
& =P(0,0,0) \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \rho_{1}^{k} \rho_{2}^{m} \rho_{3}^{n} \\
& =\rho_{1}^{k}\left(1-\rho_{1}\right), \text { for } k=0,1,2 \tag{2.19}
\end{align*}
$$

Similarly, the marginal probabilities $P(. m$.$) of m$ units in Q_{2} and $P(. . n)$ of n units in Q_{3} are

$$
\begin{aligned}
& P(. m .)=\rho_{2}^{m}\left(1-\rho_{2}\right), \text { for } m=0,1,2 \ldots \text { and } \\
& P(. . n)=\rho_{3}^{n}\left(1-\rho_{3}\right), \text { for } m=0,1,2 \ldots \mathrm{Q}_{1}, \mathrm{Q}_{2} \mathrm{Q}_{3}
\end{aligned}
$$

3. SOME CHARACTERISTICS OF THE SYSTEM

3.1. Mean queue length : It is denoted by L and is equal to the sum of marginal queue lengths of the queues $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3} which are denoted by $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} respectively.

$$
\begin{equation*}
\text { Hence, } \mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3} \tag{3.1}
\end{equation*}
$$

Now, the marginal queue length L_{1} in the queue Q_{1} is obtained by the formula

$$
\mathrm{L}_{1}=\sum_{k=0}^{\infty} k P(k . .)
$$

Using (2.19) for $\mathrm{P}(\mathrm{k} .$.$) in the above relation and simplifying, we have$

$$
\begin{equation*}
\mathrm{L}_{1}=\frac{\rho_{1}}{1-\rho_{1}} \tag{3.2}
\end{equation*}
$$

Similarly, the marginal mean queue lengths L_{2} and L_{3} for the queues, Q_{2} and Q_{3} respectively are :

$$
\begin{align*}
& \mathrm{L}_{2}=\frac{\rho_{2}}{1-\rho_{2}} \tag{3.3}\\
& \text { And } \mathrm{L}_{3}=\frac{\rho_{3}}{1-\rho_{3}} \tag{3.4}
\end{align*}
$$

Now, using (21), (22) and (23) in (20), we have

$$
\begin{equation*}
\mathrm{L}=\frac{\rho_{1}}{1-\rho_{1}}+\frac{\rho_{2}}{1-\rho_{2}}+\frac{\rho_{3}}{1-\rho_{3}} \tag{3.5}
\end{equation*}
$$

Where P_{1}, P_{2} and P_{3} are defined in (17),
3.2. Fluctuation in the queue length : Fluctuation is denoted by Var θ for $\theta=k+m+n$ and is evaluated as

$$
\begin{align*}
& \operatorname{Var} \theta=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(\theta-L)^{2} \rho(k, m, n) \\
& \quad=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(k+m+n)^{2} \rho(k, m, n)-L^{2} \tag{3.6}
\end{align*}
$$

using $\rho(\mathrm{k}, \mathrm{m}, \mathrm{n})$, from (2.17) in (3.6) and the value of L from (3.5), we have

$$
\begin{align*}
& \operatorname{Var} \theta=P(0,0,0) \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(k+m+n)^{2} \rho_{1}^{k} \rho_{2}^{m} \rho_{3}^{n}-L^{2} \\
& \quad=\sum_{i=1}^{3} \frac{\rho_{i}\left(1-\rho_{i}\right)}{\left(1-\rho_{i}\right)^{2}}-\left[\sum_{i=1}^{3} \frac{\rho_{i}}{1-\rho_{i}}\right]^{2} \tag{3.7}
\end{align*}
$$

4. PARTICULAR CASES

Case-I. If we take $\lambda_{3}=0=b_{1}=b_{2}=J_{12}=J_{21}=p_{12}=p_{21}$
Then, equation (3.5) becomes $L=\frac{\lambda_{1}}{\mu_{1}-\lambda_{1}}+\frac{\lambda_{2}}{\mu_{2}-\lambda_{2}}+\frac{\lambda_{1}+\lambda_{2}}{\mu_{3}-\left(\lambda_{1}+\lambda_{2}\right)} \ldots$
Which coincides with the result given by Maggu [4].
Case-II. If we consider, $\lambda_{2}=0=\lambda_{3}=b_{1}=b_{2}=J_{12}=J_{21}=p_{21}$ and $p_{12}=1$ with $\mu_{3} \rightarrow \infty$ in the equation (3.5),
we have :

$$
\begin{equation*}
L=\frac{\lambda_{1}}{\mu_{1}-\lambda_{1}}+\frac{\lambda_{2}}{\mu_{2}-\lambda_{1}} \tag{4.2}
\end{equation*}
$$

This result coincides with the result given by Jackson [2].
Case-III. If we assume $\lambda_{2}=0=\lambda_{3}=b_{1}=b_{2}=J_{12}=J_{21}$ and $p_{12}=1$ with $\mu_{3} \rightarrow \infty$ in equation (2.17), we have
$P(k, m)=\left[1-\frac{\lambda_{1}}{\mu_{1}\left(1-p_{21}\right)}\right]\left[1-\frac{\lambda_{1}}{\mu_{2}\left(1-p_{21}\right)}\right]\left[\frac{\lambda_{1}}{\mu_{1}\left(1-p_{21}\right)}\right]^{k}\left[\frac{\lambda_{1}}{\mu_{2}\left(1-p_{21}\right)}\right]^{m}$
This results gives the solution of the cyclic queues with terminal feedback which was given by Finch [10].

REFERENCES

1. G.C.O' Brien, The solutions of some queueing problems, J.Soc. Ind. App. Math 2, 132-142, 1954.
2. R.R.P. Jackson, Queueing system with phase type service, Operations Research Quarterly 5, 109-120, 1954.
3. T. Suzuki, Two queues in series, J.O.R. Soc. of Japan 5, 149-155, 1963.
4. P.L. Maggu, On certain type of queues in series, Statistica Netherlandica 24, 89-97, 1970.
5. D.Y. Barrer, Queueing with impatient customer and ordered service, Operations Research 5, 650-656, 1957.
6. F.A. Haight, Queueing with reneging, Metrika, 2, 186-197, 1959.
7. J.D. Blackburn, Optimal control of a single server queue with balking and reneging, Management Science 11, 297-313, 1972.
8. E. Koenigsberg, On Jockeying in Queues, Unpublished paper presented to CORSORSA Joint National Conference Montreala, 1964.
9. R.L. Disney and W.E. Mitchell, A solution for queues with instantaneous Jockeying and other customer selection rule, Navel Research Logistics Quarterly. 17, 315-325, 1970.
10.P.D. Finch, Cyclic queues with feedback, J. Roy. Stat. Soc. Ser-B 21, 153-157, 1959.
11.F.P. Kelly, Networks of Queues, $A d v$. App. Prob. 8, 416-432, 1976.
12.B. Melaned, Characterizations of Poisson traffic streams in Jackson queueing networks, Adv. App. Prob. 11, 422-438, 1979.
13.A.B. Chandramouli, Queues in bi-tandem channels linked in tandem with a common channel with non-linear service growth rate, Acta Ciencia Indica, XXII (M), 197206, 1996.
14.A.B. Chandramouli, Queues in bi-tandem channels, Acta Ciencia Indica XXII (M), 171-179, 1996.
