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Abstract – Perturbation theory is systematically used to generate root finding 

algorithms with fourth order derivatives. Depending on the number of correction terms 

in the perturbation expansion and the number of Taylor expansion terms, different root 

finding formulas can be generated. Expanding Taylor series up to fourth order 

derivatives and taking two, three and four correction terms in the perturbation 

expansions, three different root finding algorithms are derived. The algorithms are 

contrasted numerically with each other as well as with the Newton-Raphson algorithm. 

It is found that the quadruple-correction-term algorithm performs better than the others.    
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1. INTRODUCTION 

 Perturbation theory is well established and used in search of approximate 

solutions of algebraic equations, differential equations, integro-differential equations, 

difference equations etc. In finding the roots of a function, perturbation methods can be 

used. Many examples of algebraic equations with small parameters were treated in the 

book by Nayfeh [1]. By expanding the root in a perturbation series, each correction term 

was calculated in order to find the approximate root. As is usual in perturbation 

methods, the correction terms were calculated once and no iterations over the 

corrections were made. In the book by Hinch [2], the perturbation method and iteration 

method were treated as separate methods. A combination of perturbations with 

iterations or the so-called “perturbation-iteration method” would be a better choice. In 

fact, the well known formulas such as Newton Raphson and its second and higher order 

corrections, namely the Householder’s iteration and Schroder family [3] can be derived 

from perturbations. Depending on the number of terms taken in the perturbation 

expansion, on the number of terms in the Taylor expansion and the way the resulting 

equations are separated, different iteration formulas which may or may not belong to the 

mentioned class of iteration formulas can be generated.  

 The link between perturbations and root finding algorithms was exploited in a 

recent work [4]. Root finding formulas consisting of up to third order derivatives were 

derived in that work. With referral to the number of terms taken in the perturbation 

expansions, formulas were classified as single-correction-term algorithms, double-

correction-term algorithms, triple-correction-term algorithms. Taylor expansions were 

taken up to third order derivatives in that work. The root finding algorithms were 

contrasted with those derived by Abbasbandy [5] using modified Adomian 

decomposition method.  

 In this work, Taylor series expansions are carried up to fourth order derivatives. 

In the perturbation expansions, two correction, three correction and four correction 

terms are taken each leading to a different root finding algorithm (double-correction-
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term algorithm, triple-correction-term algorithm, and quadruple-correction-term 

algorithm in our referral). Numerical comparisons of the three formulas derived and 

Newton-Raphson formula yield that the higher order algorithms perform better than the 

Newton-Raphson method with the best being quadruple-correction-term algorithm. 

Based on this work as well as on the previous work [4], one may conclude that the best 

algorithms can be derived by taking the same number of correction terms both in Taylor 

expansions and perturbation expansions.    

 

2. PERTURBATION-ITERATION METHOD 

 In this section, three single point iteration formulas consisting fourth order 

derivatives will be derived by using perturbation theory. The formulas are classified 

with respect to the number of correction terms in the perturbation expansion.  

 

2.1. Double-Correction-Term Algorithm 

 To find the roots of the nonlinear equation 

  f(x) = 0                (1) 

one may assume a perturbation expansion of the below form with two correction terms  

x = x0 + εx1 + ε
2
x2               (2) 

Inserting (2) into (1) and expanding in a Taylor series up to fourth order derivative 

terms yields 
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Re-arranging the terms with respect to similar powers of ε, one has 

))x(fx()x(f)xxx(f 0102

2

10
′ε+≅ε+ε+  






 ′′′+′′ε+




 ′′+′ε+ )x(fx
6

1
)x(fxx)x(fx

2

1
)x(fx 0

3

1021

3

0

2

102

2  

0)x(fx
24

1
)x(fxx

2

1
)x(fx

2

1
0

iv4

102

2

10

2

2

4 =




 +′′′+′′ε+                 (4) 

Equation (4) contains two unknowns x1 and x2 which requires two equations to be 

solved. Hence equation (4) is separated into two blocks as follows 
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Solving (5), one obtains 
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Equation (6) is solved for ε2x2 with equation (7) substituted when necessary yielding 
finally  
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Here, for the sake of brevity,  f = f(x0 ) is taken. The iterative scheme is then constructed 

by inserting the correction terms to the perturbation expansion 
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Note that the sum of the last two terms is the second correction term. When 0)x(f n ≅′ , 

Newton-Raphson algorithm has convergence problems. Equation (9) in addition, will 

have convergence problems for 0)x(f n ≅′′ . 

 

2.2. Triple-Correction-Term Algorithm 

 One may now take three correction terms in the perturbation expansion as 

follows  

x = x0 + εx1 + ε
2
x2 + ε

3
x3            (10) 

Inserting (10) into (1) and expanding in Taylor Series up to fourth order derivatives one 

has 
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Collecting like powers of ε yields 
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The equations are then separated into three equations for solving the three unknowns as 

follows 

0)x(fx)x(f 010 =′ε+           (13) 
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Equation (13) yields the same solution as given in equation (7). From (14) the second 

unknown is solved as follows  
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Using (7) and (16), finally equation (15) is solved 
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where f=f(x0) for brevity. Substituting all results into the perturbation expansion yields 

the recursion algorithm 
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2.3. Quadruple-Correction-Term Algorithm 

Four correction terms are now considered in the perturbation expansion as 

follows 

x = x0 + ε x1 + ε
2
x2 + ε

3
x3 + ε

4
x4           (19) 

Inserting the expansion into equation (1) and expanding in a Taylor series up to fourth 

order derivative  
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and grouping the similar order terms yields 
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The above block is separated into four equations for four unknowns 

0)x(fx)x(f 010 =′ε+            (22) 



 

 

Perturbative Derivation and Comparisons of Root-Finding Algorithms 

 

121 

0)x(f
2

x
)x(fx 0

2

1
02

2 =







′′+′ε             (23) 

0)x(f
6

x
)x(fxx)x(fx 0

3

1
02103

3 =







′′′+′′+′ε           (24) 

0)x(f
24

x
)x(f

2

xx
)x(fxx)x(f

2

x
)x(fx 0

iv
4

1
0

2

2

1
0310

2

2
04

4 =







+′′′+′′+′′+′ε       (25) 

Solution of (22) is given in (7) and that of (23) in (16). Solving (24) yields 
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Finally, from (25), one has 
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Inserting all into the perturbation expansion finally yields the recursion formula 
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Numerical comparisons of the three different schemes will be presented next.  

 

3. NUMERICAL COMPARISONS 

 Numerical comparisons of different methods are given in this section. In Table 

1, the iteration numbers required to find the root of f(x) = e
–x
 – x = 0 is tested. Newton-

Raphson, and fourth order derivative schemes with double, triple, and quadruple 

correction terms are compared. Double-correction-term algorithm works like Newton-

Raphson, but triple and quadruple-correction-term algorithms are better because they 

require fewer iteration to converge to the root. It is hard to decide whether triple-

correction or quadruple-correction algorithm performs better with this example so 

another equation is selected. The equation is f(x) = tan(x) – tanh(x)= 0 and the results 

are presented in Table 2.  From Table 2, in addition to the conclusions retrieved from 

Table 1, one can conclude that quadruple-correction-term algorithm performs better 

than the triple-correction-term algorithm.  

 

4. CONCLUDING REMARKS 

 In the outlined calculations, one may take n correction terms in the perturbation 

expansion and m additional terms in the Taylor expansion. Obviously m≥n for all 
unknowns to be solved. From this paper and the previous paper [4], one may conclude 

that the performance becomes better as n increases with an optimum selection of m=n. 

In this paper m=n=4 is the best algorithm selected compared to the m=4, n=3 and m=4, 

n=2 algorithms.   
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Table 1- Roots of f(x) = e
–x 
– x = 0 by different methods  

 Newton-Raphson 
Double- Correction -

Term (Eq. 9) 

Triple- Correction- 

Term (Eq. 18) 

Quadruple- Correction 

-Term (Eq. 28) 

Initial Value  0.1 0.1 0.1 0.1 

First Iteration  0.52252 0.60952 0.56717 0.56723 

Second Iteration  0.56678 0.56746 0.56714 0.56714 

Third Iteration  0.56714 0.56714   

     

Initial Value  0.2 0.2 0.2 0.2 

First Iteration  0.54020 0.59318 0.56715 0.56717 

Second Iteration  0.56701 0.56727 0.56714 0.56714 

Third Iteration  0.56714 0.56714   

     

Initial Value  0.3 0.3 0.3 0.3 

First Iteration  0.55322 0.58078 0.56714 0.56715 

Second Iteration  0.56711 0.56718  0.56714 

Third Iteration  0.56714 0.56714   

     

Initial Value  0.4 0.4 0.4 0.4 

First Iteration  0.56184 0.57240 0.56714 0.56714 

Second Iteration  0.56714 0.56715   

Third Iteration   0.56714   

     

Initial Value  0.5 0.5 0.5 0.5 

First Iteration  0.56631 0.56797 0.56714 0.56714 

Second Iteration  0.56714 0.56714   

     

Initial Value  0.6 0.6 0.6 0.6 

First Iteration  0.56695 0.56734 0.56714 0.56714 

Second Iteration  0.56714 0.56714   

     

Initial Value  0.7 0.7 0.7 0.7 

First Iteration  0.56408 0.57021 0.56714 0.56714 

Second Iteration  0.56714 0.56714   

     

Initial Value  0.8 0.8 0.8 0.8 

First Iteration  0.55805 0.56722 0.56714 0.56714 

Second Iteration  0.56713 0.56716   

Third Iteration  0.56714 0.56714   

     

Initial Value  0.9 0.9 0.9 0.9 

First Iteration  0.54920 0.58494 0.56715 0.56714 

Second Iteration  0.56708 0.56720 0.56714  

Third Iteration  0.56714 0.56714   
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Table 2- Roots of f(x) = tan(x)– tanh(x)= 0 by different methods  

 Newton-Raphson 
Double Correction 

Term (Eq. 9) 

Triple Correction 

Term (Eq. 18) 

Quadruple Correction 

Term (Eq. 28) 

Initial Value 3.6 3.6 3.6 3.6 

First Iteration 4.0071 3.9662 3.9264 3.9293 

Second Iteration 3.9334 3.9265 3.9266 3.9266 

Third Iteration 3.9266 3.9266   

     

Initial Value 3.7 3.7 3.7 3.7 

First Iteration 3.9695 3.8809 3.9267 3.9271 

Second Iteration 3.9285 3.9245 3.9266 3.9266 

Third Iteration 3.9266 3.9266   

     

Initial Value 3.8 3.8 3.8 3.8 

First Iteration 3.9412 3.9111 3.9266 3.9266 

Second Iteration 3.9268 3.9264   

Third Iteration 3.9266 3.9266   

     

Initial Value 3.9 3.9 3.9 3.9 

First Iteration 3.9273 3.9259 3.9266 3.9266 

Second Iteration 3.9266 3.9266   

     

Initial Value 4.0 4.0 4.0 4.0 

First Iteration 3.9322 3.9213 3.9266 3.9266 

Second Iteration 3.9266 3.9266   

     

Initial Value 4.1 4.1 4.1 4.1 

First Iteration 3.9598 3.8987 3.9262 3.9266 

Second Iteration 3.9277 3.9258 3.9266  

Third Iteration 3.9266 3.9266   

     

Initial Value 4.2 4.2 4.2 4.2 

First Iteration 4.0129 3.8633 3.8633 3.9274 

Second Iteration 3.9345 3.9226 3.9226 3.9266 

Third Iteration 3.9267 3.9266 3.9266  

Fourth Iteration 3.9266    

     

Initial Value 4.3 4.3 4.3 4.3 

First Iteration 4.0934 3.8279 3.6327 3.9349 

Second Iteration 3.9572 3.9204 3.9266 3.9266 

Third Iteration 3.9276 3.9267   

Fourth Iteration 3.9266 3.9266   
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