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Abstract- A self-similar, theoretical model of propagation of cylindrical shock wave in 

a magneto- gas dynamic rotating non-uniform atmosphere in the presence of 

monochromatic radiation and gravitation, is considered. The result discussed depends 

upon the variations of the flow variables behind the shock, which are displayed 

graphically. A special case is considered in presence and absence of gravitation along 

with rotation to observe the influence of gravitation. 
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1.  INTRODUCTION 

Recently there has been considerable interest in the study of processes occurring under 

the action of radiation on gaseous substances in the stellar interiors. Sedov[3] made it 

possible to analyze certain classes of  self-similar solutions in a number of problems 

with  disturbed energy release with the help of methods of theory of dimensionality. 

Onkar Nath[1] presented  a theoretical  model of  cylindrical magneto-hydrodynamic  

shock waves under the action of monochromatic radiation in non-uniform stellar 

atmosphere , following the work of  Khudyakov on the self-similar problem of motion 

of a gas under the action of monochromatic radiation.  Nath [2] further studied a model 

of cylindrical shock waves in a non-uniform rotating   atmosphere under the action of 

monochromatic radiation, where he omitted magnetic field effect. In the present paper, 

we have studied the propagation of cylindrical shock wave in a magneto-gas dynamic 

rotating non-uniform atmosphere in the presence of monochromatic radiation and 

gravitation. Gas is assumed to be gray and opaque and shock to be transparent. The 

shock is assumed to be propagating in a conducting medium at rest with density varying 

as r
β  
(-2<β≤0). The magnetic field distribution varies as r

α 
 (α<0) and is directed 

tangential to the advancing shock front. The radiation flux moves through the gas with a 

constant intensity in the direction opposite to that of the propagation of shock wave. 

Further, the rotating gas does not radiate itself and energy in absorbed only behind the 

shock wave. Also, it is assumed that the radiation pressure and radiation energy are very 

small in comparison to the material pressure and energy, hence neglected. The results 

discussed depend upon the variations of the flow variables behind the shock, which are 

displayed graphically. A special study is undertaken to consider the influence of 

gravitation on the variations of flow parameters in the presence and absence of rotation. 
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  2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS  

 In accordance with the above assumptions the motion of an inviscid 

perfect gas in a magneto-gas dynamic rotating non uniform medium in presence of 

monochromatic radiation and gravitation can be described by the following system of 

differential equations:  
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      where u , p , ρ, h, m, v, j and e are the radial component of velocity , pressure , 
density ,  magnetic field , mass per unit volume, azimuthal component of velocity , 

monochromatic radiation flux , energy per unit mass at a radial distance r and time t  

respectively. G represents the gravitational constant and K is the absorption coefficient. 

    Moreover, e = p/{ρ(γ-1)}                                                      (8) 

         where  γ  is the ratio of specific heats.   
The radial velocity u0, azimuthal component of velocity v0, density distribution 

ρ0,magnetic field h0 in the undisturbed medium are taken as 
     u0 =0; v0  =0; ρ0  = ρ

*
 R

β   
, (-2<β≤0) ; h0  = h

*
 R
-1
                             (9) 

       
               where   ρ*, h*, β are constants, h0  is assumed to be directed tangentially to 

advancing shock front and R is the radius given by (dR/dt)
2   
=A

2  
R
- α
 , A and   α are 

constants.                  

     The boundary conditions at the shock are given by [Zel’dovich and Raizer [4]: 

        U1  =2 (dR/dt)/ (γ+1),                       v1=2(dR/dt)/ (γ+1) 
      ρ1  =  {ρ0 (γ+1)}/(γ-1),                      p1 =  2ρ0 (dR/dt)

2 
/(γ+1), 

      e1 =2 (dR/dt)
2
/ (γ+1)2 ,               h1 = h0(γ+1)/(γ-1), 

       m1 =  m0 = 2π ρ
*
 r
2+β
/ (2+ β)       (10)       

 

 where the suffixes ‘1’ and ‘0’ refer to the conditions just behind and ahead of the shock 

respectively. 
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The Alf’ven Mach number and the usual Mach number are defined as                     
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shock.         

   The absorption co-efficient K is considered as ( Nath [1] ): 
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    where the dimension  of the constant K0  is given by 
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Moreover, the dimensionless constants J0, p0, ρ0 are related as 
    2/1

0

2/3

00

−= ρpj          (13) 

Under the equilibrium condition, we have from (2) 

)/()/)(1)(2)](2/(1)/(1[ 2*222 ++++−= βπρββγ rdtdRMMG A           (14) 

 

3.  SOLUTION OF THE PROBLEM 

Let us assume the solution of the fundamental equations (1)-(8) in the similarity form as 

),()/( xUdtdRu =                    (15) 

),()/( xVdtdRv =         (16) 

),(0 xFρρ =          (17) 

),()/( 20 xPdtdRp ρ=                    (18) 

),(1 xSmm =          (19) 

),()/(2/10 xHdtdRh ρ=        (20) 

),(0 xJJj =                     (21) 

)()/( 2 xEdtdRe = ,        (22)  

   

   where X = r/R(t).                                        (23) 

Substituting these in the fundamental equations (1) –(8), we get a set of differential 

equations as given below: 
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The above set of differential equations (24)-(32), after some simplifications can be put 

in the following form: 
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The boundary conditions (10) changes to-                                      (41) 

U=2 / (γ+1), V=2 / (γ+1), F=1, P=1,E=1,J=1,H=1 and S=1 for  X=1.  
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                     Fig 1. Variation of Radial velocity with                                        Fig 2. Variation of Density with Distance 
                                 Distance  series1&2 shows with                                                    series1&2 shows with Gravitation 

                                 Gravitation(γ=7/5,4/3)  & series 3&4                                             (γ=7/5,4/3) & series 3&4 without 

                                  without  Gravitation(γ=7/5,4/3)                                                     Gravitation(γ=7/5,4/3) 
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                    Fig 3. Variation of Magnetic Field with                                        Fig 4. Variation of Energy with Distance 

                               Distance  series1&2 shows with                                                    series1&2 shows with Gravitation 
                               Gravitation(γ=7/5,4/3)  & series 3&4                                            (γ=7/5,4/3) & series 3&4 without 

                                without  Gravitation(γ=7/5,4/3)                                                    Gravitation(γ=7/5,4/3) 
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                        Fig 5. Variation of Pressure with Distance                                  Fig 6. Variation of Rotational Velocity with 

                                     series1&2 shows with Gravitation                                              Distance series1&2 shows with 
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      Fig 11. Variation of Magnetic Field with Distance                          Fig 12. Variation of Energy with Distance 
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4. RESULT AND DISCUSSIONS 

 

The set of differential equations (33)- (40) have been integrated numerically with the 

help of boundary conditions (41) by the well known Runge -Kutta method  α1=2 and 

2.5, β=-1.5 and -2, γ=4/3,7/5; M
2
=5, 

2

AM =10, α =2(2- γ)/(γ+1) and n=-1/2, m=3/2, 

q=0,s=1. We have plotted the graphs showing the variations of various flow parameters 

with distance for different values of γ, β and α1 in presence and absence of gravitational 

field and in presence and absence of rotation. This helped us to study the importance of 

gravitation and rotation respectively on flow parameters. 

                  From Fig.1 to Fig.8, we observe that the radial component of velocity, 

magnetic field, energy, rotational velocity, radiation flux decrease as we go towards the 

center of the explosion, while density and pressure increase as we go towards the center 

of the shock. In fig.8, it is surprising to note that the mass decreases for the case of 

γ=7/5 for both presence and absence of gravitational field, it remains uniform for the 

case of γ=4/3. In absence of gravitational field decrease in the radial velocity, magnetic 

field and energy is more prominent. In the presence of gravitational field we see that 

decrease in rotational velocity, radiation flux is more prominent while the increase in 

the value of density and pressure is more prominent. 

   To draw a comparison between gravitational effects vis-à-vis 

rotational effect, we have also observed the variations of flow parameters in the absence 

of rotation in fig.9 to fig.15 and compared it with the earlier drawn graphs for the 

absence of gravitation. We find that radial velocity, magnetic field, energy decrease 

more in presence of rotational velocity while radiation flux decreases more rapidly in 

the absence of rotational velocity. As expected, in the absence of rotation, the value of 

pressure and density increase more as we go towards the center of the shock. However, 

the peculiar phenomenon to be observed is that the variation of mass remains uniform in 

case of γ=4/3, α1=2 and β=-2 irrespective of the presence or absence of the rotational 

effect. We further note that the gravitational effect is important for the propagation of 

shock waves in the present problem. 
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