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Abstract- In part I [1] we dealt with a tuned absorber, which can move in the 

transversally direction, where it is added to an externally excited pendulum. Active 

control is applied to the system via negative velocity feedback or its square or cubic 

value. The multiple time scale perturbation technique is applied throughout. An 

approximate solution is derived up to second order approximation. The stability of the 

system is investigated applying both frequency response equations and phase plane 

methods. The effects of the absorber on system behavior are studied numerically. 

Optimum working conditions of the system are obtained applying passive and active 

control methods. Both control methods are demonstrated numerically. In this paper, a 

tuned absorber, in the longitudinal direction, is added to an externally excited 

pendulum. Active control is applied to the system via negative acceleration feedback or 

via negative angular displacement or its square or cubic value. An approximate solution 

is derived up to the second order approximation for the system with absorber. The 

stability of the system is investigated applying both frequency response equations and 

phase plane methods. The effects of the absorber on system behavior are studied 

numerically. Optimum working conditions of the system are extracted when applying 

both passive and active control methods.  

Keywords-   Spring-pendulum, Absorber, Active and passive control. 

 

1. INTRODUCTION 

Vibrations and dynamic chaos are undesired phenomenon in structures. They 

cause disturbance, discomfort, damage and destruction of the system or the structure. 

For these reasons, money, time and effort are spent to get rid of both vibrations and 

noise or chaos or to minimize them. One of the most effective tools for passive 

vibration control is the dynamic absorber or the damper or the neutralizer [2].  Eissa [3] 

has shown that a non-linear absorber can be used to control the vibration of a non-linear 

system. Also, he has shown that the non-linear absorber widens its range of 

applications, and its damping coefficient should be kept minimum for better 

performance [4]. Cheng-Tang Lee et al. [5] demonstrated a dynamic vibration absorber 

system, which can be used to reduce speed fluctuations in rotating machinery.  Eissa 

and El-Ganaini [6,7] studied the control of both vibration and dynamic chaos of both 

internal combustion engines and mechanical structures having quadratic and cubic non-

linearties, subjected to harmonic excitation using single and multi-absorbers. Active 

constrained layer damping (ACLD) has been successfully utilized as effective means of 

damping out the vibration of various flexible structures [8-13]. A variable stiffness 

vibration absorber without damping is used for controlling the principal mode of a 
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vibrating structure. The optimal vibration absorber is also utilized for controlling higher 

mode [14]. Another approach of active damping of mechanical structures is the hybrid 

system, which is a combination of semi-active and active treatments, in which the 

advantages of individual schemes are combined, while eliminating their shortcomings 

[15]. Active damping of mechanical structures can be utilized using piezoceramic 

sensors and actuators [16-17]. The vibration of rotating machinery is suppressed by 

eliminating the root cause of the vibration system imbalance [18]. 

In the present paper, a tuned absorber, which can move in the longitudinal 

direction, is added to an externally excited pendulum, which is described by a second 

order non-linear differential equation having both quadratic and cubic non-linearties, 

subjected to harmonic excitation. Active control is applied to the system via negative 

acceleration feedback or via negative feed back of angular displacement or its square or 

cubic value. The multiple time scale perturbation technique is applied throughout. An 

approximate solution is derived up to the second order approximation for the system 

with absorbers. The stability of the system is investigated applying both frequency 

response equations and phase plane methods. The effects of the absorber on system 

behavior are studied numerically. Optimum working conditions of the system are 

obtained applying both passive and active control methods. Both control methods are 

compared numerically.  

2. MATHEMATICAL MODELING 

The considered system is shown in Fig. 1. As reported in part I, the kinetic and 

potential energies are given in the following forms respectively: 
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Applying Lagrangian equations and taking into account the effects of linear viscous 

damping and external excitation on the main system, the following differential 

equations of motion are obtained: 
2

1 1 0 0sin {[2( ) ] 2( ) sin } cosc l l u u l l u u gu f tϕ ϕ ω ϕ β ϕ ϕ ϕ+ + + + + + + + + = Ω&& & && & & (3) 

2 3 2

2 2 0( ) (1 cos ) 0u c u u u l l u gω α ϕ ϕ+ + + − + + + − =&& & &                 (4) 

whereα is the spring stiffness non-linear parameter, 1 2& ω ω are the natural frequencies, 

1 2&c c are the linear damping coefficients of the pendulum and absorber 

respectively, f is the forcing amplitude andΩ is the forcing frequency of the pendulum.  

It is assumed that both u and ϕ are small, and the whole motion is a planer one. Due to 

these assumptions, both (sinϕ) and ( ϕcos ) can be written in the form: 

2 4

cos 1
2! 4

ϕ ϕ
ϕ − +

!
≅ ,     

3

sin
3!

ϕ
ϕ ϕ≅ −                                                           (5, 6) 

The damping coefficients and the forcing amplitudes are assumed to be in the form: 

       nn cc ˆε=    , 
2 ˆf fε=                                      n =1, 2.                           (7) 

where ε  is a small perturbation parameter and 10 <<< ε . 
Eqns. (3) and (4) can be re-written in the form: 

2
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ˆ s i n { [ 2 ( ) ] 2 (c l l u u lϕ ε ϕ ω ϕ β ϕ+ + + + + +&& & &&         

3
2

0
ˆ) ( )} cos
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l u u gu f t

ϕ
ϕ ϕ ε+ + + − = Ω& &                                                     (8) 

2 4
2 3 2

2 2 0
ˆ ( ) ( ) 0

2 4
u c u u u l l u g

ϕ ϕ
ε ω α ϕ+ + + − + + + − =&& & &              (9) 

  Assuming the solution of equations (8) and (9) to be in the form 
2

1 0 1 2 0 1( ; ) ( , ) ( , ) ....t T T T Tϕ ε ε ϕ ε ϕ+ +=                                                          (10) 
2

1 0 1 2 0 1( ; ) ( , ) ( , ) ....u t u T T u T Tε ε ε+ +=                                                          (11) 

where  , ( 0,1)n

nT t nε == .  The derivatives will be in the forms 

0 1 ....
d

D D
dt

ε= + + ,       K++= 10

2

02

2

2 DDD
dt

d
ε                                (12, 13) 

where  
∂

∂
=n

Tn
D , n = 0,1.  Equating the similar powers of ε in both side’s yields.   

2 2

0 1 1( ) 0D ω ϕ+ =                                                                                   (14) 
2 2

0 2 1( ) 0D uω+ =                                                                                   (15) 
2 2 2

0 1 2 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1
ˆ( ) 2 2 ( ) 2 ( )D D D c D l l u D l l D u Dω ϕ ϕ ϕ β ϕ β ϕ+ = − − − + − +    

1 1 0

ˆ
exp( )

2

f
gu i Tβ ϕ− + Ω                                                           (16) 

2 2 2

0 2 2 0 1 1 2 0 1 0 0 1 1
ˆ( ) 2 ( )( ) / 2D u D D u c D u l l D gω ϕ ϕ+ = − − + + −                               (17) 

The general solutions of Eqns. (14) and (15) can be written in the form 

1 11 0exp( )B i T ccϕ ω +=                                                                                            (18)  



 

 

M. Eissa  and M. Sayed  

 

154

2 21 0exp( )u B i T ccω +=                                                                                            (19)   

where 1B  and 2B are complex functions in T1 , which can be determined from 

eliminating the secular terms at the next approximation, and cc represents the complex 

conjugates.  Substituting from Eqns. (18) and (19) into Eqns. (16) and (17) and 

eliminating the secular terms, then the first-order approximation is obtained as: 

1 2 1 3 1 42 1 0 2 0 2 0 0) )exp( ) exp( ( ) exp( ( ) exp( )Q i T Q i T Q i T Q i T ccϕ ω ω ω ω ω+ −= + + + Ω +   (20) 

  2 2 1 3 1 42 1 0 0 0exp( ) exp( ) exp(2 )u R i T R i T R i T R ccω ω ω += + + +                                     (21) 

where , ( 1,2,3, 4)i iQ R i =  are complex functions in T1 and cc represents the complex 

conjugates.  From the above-derived solutions, the reported resonance cases are: 

a- Primary resonance    (1) 1ωΩ ≅                 (2) 2ωΩ ≅      

b- Sub-harmonic and super-harmonic resonance     (1) 12ωΩ ≅              (2) 2 / 2ωΩ ≅            

c- Internal or secondary resonance   (1) 1 2ω ω≅              (2) 1 22ω ω≅                  

d- Simultaneous or incident resonance 

Any combination of the above resonance cases is considered as simultaneous or 

incident resonance.  

3. STABILITY OF THE SYSTEM 

Using the simultaneous primary resonance conditions 1 1
ˆω εσΩ = + , 

1 2 2
ˆω ω εσ= +  (where 1 1

ˆσ εσ= and 2 2
ˆσ εσ=  are called detuning parameters) and 

eliminating the secular terms leads to solvability conditions. 

1 11 1 1 1 1 1

ˆ
ˆ ˆ2 exp( )

2

f
i D B ic B i Tω ω σ+= −                                                          (22)                                              

2 2 2 2 2 1 2 11
ˆ ˆ2 exp( )

2

g
i D B ic B B i Tω ω σ−= −                                                          (23) 

Putting           
ˆ
exp( )

2

n

n n

b
B iη=    ,     ˆ

n nb bε=
  
 n = 1, 2                                    (24) 

where & nnb η  are the steady state amplitudes and the phases of the motions 

respectively. Substituting from equation (24) into equations (22)-(23) and equating the 

real and imaginary parts we obtain: 

11
1

sin( )
12 2

1

c b f
b θ

ω
= − +&                                                                            (25)                                                                    

1 11 1
1

1

co s ( )
2

f
b bθ σ θ

ω
= +&                                                                               (26) 

2 2 1

2 sin( )
22 4

2

c b gb
b θ

ω
= − −&                                                                                  (27) 

1( ) ( ) cos( )
2 1 2 2 1 2 24

2

g b
b bθ θ σ σ θ

ω
+ = + −& &                                                      (28)          

where  1 1 1 1 2 2 1 1 2
ˆ ˆT and Tθ σ η θ σ η η= − = + −   
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         The periodic motions are obtained when 0n na θ= =&& . Hence, the fixed points of 

Eqns.  (25)- (28) are given by 

11 s in ( ) 0
12 2

1

c b f
θ

ω
− + =                                                                       (29)                                                                                  

1 1

1
1

c o s ( ) 0
2

f
b σ θ

ω
+ =                                                                           (30) 

2 2 1 sin( ) 0
22 4

2

c b gb
θ

ω
− − =                                                                               (31) 

1

2 1 2( ) cos( ) 0
24

2

g b
b σ σ θ

ω
+ − =                                                                        (32)         

There are three possibilities in addition to the trivial solution. They are: 

 (1) 1 0≠b , 2 0=b                  (2) 2 0≠b , 1 0=b                  (3) 1 0≠b , 2 0≠b  

Table (1) illustrates the corresponding frequency response equation for each case: 

Table (1) Frequency response equation for each case. 

No Case Frequency response equation (FRE) 

 

1 

 

1 0≠b , 2 0=b                  

2 2 2
2 2 1 1

1 1 2

1

0
4 4

c b f
b σ

ω
+ − =  

 

2 

 

 

2 0≠b , 1 0=b  

               

2 2

2 2 2 2 2

2 1 2( ) 0
4

c b
b σ σ+ + =  

As  2 0≠b then 

2

2 2 2

1 2( ) 0
4

c
σ σ+ + = *

  

 

3 

 

 

1 0≠b , 2 0≠b  

               

2 2 2
2 2 1 1

1 1 2

1

0
4 4

c b f
b σ

ω
+ − =  

              

2 2 2 2

2 2 2 2 2 1

2 1 2 2

2

( ) 0
4 1 6

c b g b
b σ σ

ω
+ + − =  

* 
This equation gives nothing, this means that we will never get 1 0=b . 

3.1 Stability of the fixed points 

             To analyze the stability of the fixed points, one lets                                          

 0 1+=n n nb b b , 10 nnn θθθ +=                                                                           (33)  

 where 0na , 0nθ  are the solutions of Eqns. (29)-(32).  Inserting Eq. (33) into Eqns. (25)-

(28) and keeping only the linear terms in 1na , 1nθ , we get 

11

11 10
1

11
cos( )

2 2
1

c b f
b θ θ

ω
= − +&                                                                    (34)                                                                                

2 21
21 11 20 10 21 20{ sin( ) cos( )}

2 4
2

c b g
b b bθ θ θ

ω
= − − +&                                              (35)    
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11 1

10 10

11
11 10

1

sin( )
2

b f

b b

σ
θ θ θ

ω
= −&                                                                            (36) 

21 2 11 1

21 11 10 21 20

20 20 10 10
11 10

1

{ cos( ) sin( )} sin( )
204 2

2

b bg f
b b

b b b b

σ σ
θ θ θ θ θ θ

ω ω
= − − − +&       (37)           

The stability of a particular fixed point with respect to perturbations proportional 

to exp ( 1Tλ ) depends on the real parts of the roots of the matrix. Thus a fixed point 

given in Eqns. (34)-(37) is an asymptotically stable if and only if the real parts of all 

roots of the matrix are negative. 

     To study the stability of the fixed points corresponding to case (1), we let 

21 21 0θ= =b  in Eqns. (34)-(37), and obtain the eigenvalues  

               2
( ) ( ) 4( )1 4 1 4 2 3 1 4λ + ± + + −= L L L L L L L L                               (38) 

where 1

1

2

c
L =− , 2 cos( )

12
1

L
f

θ
ω

= , 1

3

1

L
b

σ
=  and  4

1
1

1

sin( )
2

L
f

b
θ

ω
= −                 (39)          

   And hence the fixed points are unstable if and only if  

L 2 L 3 > L 1 L 4                                                           (40)                                         

Otherwise they are stable. 

     To study the stability of the fixed points corresponding to case (2), we let 

11 11 0b θ= =  in Eqns. (34)-(37), and obtain the eigenvalues  

               5 8 5 8 6 7 5 8

2( ) ( ) 4( )L L L L L L L Lλ = + ± + + −                     (41) 

Where 

2
5 2

−=
c

L , 6 1 cos( )
24

2

g
L b θ

ω
= − , 2

7

2

L
b

σ
=  and 8 1 2

2

sin( )
4

2

g
L b

b
θ

ω
=               (42)           

And hence the fixed points are unstable if and only if  

L 6 L 7 > L 5 L 8                                                            (43) 

Otherwise they are stable. 

      For the stability of the fixed points corresponding to case (3), the eigenvalues are 

given by the equation 
4 3 2

1 2 3 4 0λ λ λ λ+ + + + =R R R R                                          (44) 

Where 1R , 2R , 3R  and 4R  are functions of the parameters ( 1b , 2b , 1ω , 2ω , 1σ , 2σ , f , 

1θ , 2θ ).  According to the Routh-Huriwitz criterion, the necessary and sufficient 

conditions for all the roots of Eqn. (44) to possess negative real parts is that 

R1 >0, R1R2-R3 >0 ,   R3(R1R2-R3)- 4

2

1 RR >0 ,   R4 >0                                             (45) 

4. RESULTS AND DISCUSSIONS 

Results are presented in graphical forms as steady state amplitudes against 

detuning parameters and as time history or the response for both system and absorber.  

A good criterion of both stability and dynamic chaos is the phase-plane trajectories, 
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which are shown for some cases. In the following sections, the effects of the different 

parameters on response and stability will be investigated. Also different primary 

resonance cases are studied and discussed. 

4.1. System stability 

Fig. 2a, shows the effects of the detuning parameter σ1 on the steady state 

amplitude of the main system b1 for the stability first case, where b1≠0 and b2 = 0.   It 

can be seen from the figure that the maximum steady state amplitude occurs at primary 

resonance when Ω≅ω1.  Fig. 2b shows that the steady state amplitude of the main 

system is a monotonic decreasing function to the natural frequency ω1. 

     
Fig. 2c shows that the steady state amplitude of the main system is a monotonic 

increasing function to the excitation amplitude f. Fig. 2d shows that the steady state 
amplitude of the main system is a monotonic decreasing function to the damping 

coefficient c1. 

Figure 3, shows the effects of the detuning parameter σ2 on the steady state 

amplitude of the absorber b2 for the stability third case, where b1 ≠ 0 and b2 ≠ 0.  It can 

be seen from the figure that the maximum steady state amplitude occurs at internal 

resonance when ω1≅ω2. Fig. 3b shows that the steady state amplitude of the absorber is 

a monotonic increasing function to the steady state amplitude of the main system b1.  

Figs. (3c-3e) shows that the steady state amplitude of the absorber is a monotonic 

decreasing function in the natural frequency ω2, detuning parameter σ1 and damping 

coefficient c2. 
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Fig. 4 shows the effect of the non-linear parameter α  on the main system and absorber. 

From the figure, we can see that the steady state amplitude of the main system is a 

monotonic increasing function for 25α ≤  and for increasing value we obtain the 

saturation phenomena. Also the steady state amplitude of the absorber is a monotonic 

decreasing function in the non-linear parameter α  and for increasing value we obtain 

the saturation phenomena.  
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                                α                                                                     α  

 
4.2. Passive control 

In the following section we will discuss the effects of the absorber on pendulum 

response, stability and dynamic chaos at the worst resonance case. This case is the 

primary one, where Ω≅ω1. Fig. 5 illustrates both the response and the phase plane for 

this case. The steady state response without absorber in this case Ω≅ω is about 130%, of 

the excitation amplitude; the system is stable and free of dynamic chaos. 

 

Effects of the absorber:  Figs. (6a-6b) illustrate the results when the absorber is 

effective for the different resonance cases. They are Ω≅ω1 and Ω≅2ω1. Simultaneously 

the ratio ω2/ω1 is varied between zero and 6, i.e., 0≤ω2/ω1≤6. It can be seen for the first 

case shown in Fig. 6a that the effectiveness of the absorber Ea is about 2.  Best results 

for the absorber were obtained when 3ω2≅ω1. Fig. 6b shows that the absorber is 

ineffective as it may increase the amplitude with its maximum amplitude value occurs 

when ω2≅ω1. A common feature for all cases is the occurrence of saturation 

phenomenon. 
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4.3. Active control 

Active control is applied to improve the behavior of the simple pendulum at the 

primary resonance case Ω≅ω1. First case, we considered negative acceleration feedback.  

The equation of motion in this case is:  

             
2

1 1
ˆ sin( ) cosc G f tϕ ε ϕ ω ϕ ϕ+ + + = Ω&& & &&                             (46) 

Where G is the gain. Here, we are concerned with the effect of the gain G on the 

pendulum response. From Fig. 7a, we can see that the steady state amplitude is a 

monotonic decreasing function in the gain and it is decreased to about 2% of the steady 

state amplitude, and more increase of the gain G leads to saturation phenomena. For 

second case vibration is controlled via negative angular displacement feedback or its 

square or cubic value. The equation of motion in this case is:  

             
2

1 1
ˆ sin( ) cosnc G f tϕ ε ϕ ω ϕ ϕ+ + + = Ω&& &                           (47) 

Three cases will be considered, when n=1, 2 and 3. For  n=1, the amplitude is increasing 

up to G=0.1. Then for the region 0.1<G<1.2 the system is unstable. For the region 

1.2≤G≤1.3 the system is stable with increasing amplitude. When 3.4≤G, the system is 

stable with decreasing amplitude as shown in Fig. 7b. This means that G should be 

greater the 10 to control the system where Ea=7, at saturation beginning.  

 
For n=2, the amplitude is increasing up to G=0.1. Then for the region 0.1<G<0.4 the 

system is unstable. For the region 0.4≤G≤0.8 the system is stable with increasing 

amplitude. For the region 0.9≤G<1.3 the system is unstable, and for 1.3≤G≤1.4 the 

system is stable with increasing amplitude. When 2.8≤G, the system is stable with 

decreasing amplitude as shown in Fig. 7c. This means that G should be greater the 10 to 

control the system where Ea=3, at saturation beginning. It is clear that with active 

control, care should be taken because the system may be lead to instability instead of 

reducing the amplitude. For (n=3), Fig. 7d, shows that for G≤1 the steady state 

amplitude is a monotonic increasing function in the gain G and it is increased to about 

300% of the steady state amplitude. For G>1 the steady state amplitude is a monotonic 

decreasing function and it is decreased to about 30% of the steady state amplitude.  
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5. CONCLUSIONS 

 From the former results, the following may be concluded. 

1- The steady state amplitude of the main system is a monotonic increasing function in 

the excitation amplitude f. 

2- The steady state amplitude of the main system is a monotonic decreasing function in 

its natural frequency ω1 and damping coefficient c1.  

3- For passive control the effectiveness of the absorber for the system is about Ea=2 

when Ω≅ω1, ω2 ≅ω1 and best results for the absorber is when 3ω2 ≅ω1. 

4- Non-effective absorber is obtained when Ω≅ω1, ω2 ≥1.5ω1or Ω≅2ω1. 

5- The vibration of the system can be controlled actively via negative angular 

displacement feedback, which can be used to reduce the amplitude of the system to 

5% of the original value. 

6- For all cases of active control, occurrence of saturation phenomena is noticed.  
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