SENSITIVITY ANALYSIS OF GENERAL MIXED MULTIVALUED MILDLY NONLINEAR VARIATIONAL INEQUALITIES

Salahuddin
Department of Mathematics Aligarh Muslim University
Aligarh-202002, India
salahuddin12@mailcity.com

Abstract

Dafermos [1] studied the sensitivity properties of solutions of a variational inequality with respect to a parameter λ In this paper, we extend this analysis for general mixed multivalued mildly nonlinear variational inequalities in the setting of Hilbert spaces.

Keywords- Sensitivity analysis, general mixed multivalued mildly nonlinear variational inequality, monotone and Lipschitz mappings, Hausdorff metric.

1. INTRODUCTION

Dafermos [1] studied the sensitivity property of solutions of a particular kind of variational inequality on a parameter which takes values on an open subset of Euclidean space R^{K}. Siddiqi et al [4], Tobin [5], Verma et al [6] studied the sensitivity analysis of various types of variational inequalities.

Let H be a Hilbert space and D be a nonempty closed and convex subset of H .
Let $\mathrm{A}, \mathrm{T}: \mathrm{D} \rightarrow 2^{\mathrm{H}}$ be the multivalued mappings. We consider the problem of finding $u \in D, p \in A(u), q \in T(u)$ such that $g(u) \in D$

$$
\begin{equation*}
\langle g(v)-g(u), p+q\rangle+b(u, g(v))-b(u, g(u)) \geq 0 \text {, for all } g(v) \in D, \tag{1}
\end{equation*}
$$

where $\mathrm{b}(.,):. \mathrm{H} \times \mathrm{H} \rightarrow \mathrm{R}$ satisfying the following properties:
(i) $b(.,$.$) is linear in the first argument;$
(ii) $\mathrm{b}(.,$.$) is bounded, that is there exists constant \gamma>0$ such that

$$
\begin{equation*}
|\mathrm{b}(\mathrm{u}, \mathrm{v})| \leq \gamma\|\mathrm{u}\|\|\mathrm{v}\|, \text { for all } \mathrm{u}, \mathrm{v} \in \mathrm{H} \tag{2}
\end{equation*}
$$

(iii) $|\mathrm{b}(.,)$.$| is either convex or linear in the second argument;$
(iv) for every $\mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{H}$

$$
\begin{align*}
& |\mathrm{b}(\mathrm{u}, \mathrm{v})-\mathrm{b}(\mathrm{u}, \mathrm{w})| \leq \mathrm{b}(\mathrm{u}, \mathrm{v}-\mathrm{w}) \tag{3}\\
& \mathrm{b}(\mathrm{u}, \mathrm{v} \pm \mathrm{w}) \leq \mathrm{b}(\mathrm{u}, \mathrm{v})+\mathrm{b}(\mathrm{u}, \mathrm{w}) .
\end{align*}
$$

In this paper, we study the sensitivity analysis of general mixed multivalued mildly nonlinear variational inequality problem (GMMMNVIP) of the type (1).

2. SENSITIVITY ANALYSIS

To formulate the problem, let M be an open subset of H in which the parameter λ takes values and assume that $\left\{\mathrm{K}_{\lambda}: \lambda \in \mathrm{M}\right\}$ is a family of closed convex subset of H . The parametric general mixed multivalued mildly nonlinear variational inequality is to find $u \in D,(p, \lambda) \in A(u, \lambda),(q, \lambda) \in T(u, \lambda)$ such that $g(u) \in K_{\lambda}$

$$
\begin{equation*}
\langle\mathrm{g}(\mathrm{v})-\mathrm{g}(\mathrm{u}),(\mathrm{p}, \lambda)+(\mathrm{q}, \lambda)\rangle+\mathrm{b}(\mathrm{u}, \mathrm{~g}(\mathrm{v}))-\mathrm{b}(\mathrm{u}, \mathrm{~g}(\mathrm{u})) \geq 0 \text {, for all } \mathrm{g}(\mathrm{v}) \in \mathrm{K}_{\lambda} \tag{4}
\end{equation*}
$$

where $A(u, \lambda)$ and $T(u, \lambda)$ are multivalued mappings, which are define on the set (u, λ) with $\lambda \in \mathrm{M}$. We also assume that for some $\bar{\lambda} \in \mathrm{M}$, the problem (4) admits a solution $\overline{\mathrm{u}}$.
We want to investigate those conditions under which, for each λ is a neighbourhood of $\bar{\lambda}$. The problem (4) has a unique solution $u(\lambda)$ near \bar{u} and the function $u(\lambda)$ is continuous and differentiable. We assume that B is the closure of a ball in H centered at u .
We need the following concepts.
2.1 Definition- An operator g defined on B to H is said to be locally, $u, v \in B$,
(i) ξ-strongly monotone, if there exists a constant $\xi>0$ such that

$$
\begin{equation*}
\langle\mathrm{g}(\mathrm{u})-\mathrm{g}(\mathrm{v}), \mathrm{u}-\mathrm{v}\rangle \geq \xi\|\mathrm{u}-\mathrm{v}\|^{2} \tag{5}
\end{equation*}
$$

(ii) σ-h-Lipschitz continuous, if there exists a constant $\sigma>0$ such that

$$
\begin{equation*}
\|g(u)-g(v)\| \leq \sigma\|u-v\| . \tag{6}
\end{equation*}
$$

In particular, it follows that $\xi \leq \sigma$.
2.2 Definition- A multivalued mapping $T(u, \lambda)$ defined on $B \times M$ to $C(H)$ is said to be locally v-h-Lipschitz continuous, if there exists a constant $v>0$ such that

$$
\begin{equation*}
\mathrm{h}(\mathrm{~T}(\mathrm{u}, \lambda), \mathrm{T}(\mathrm{v}, \lambda)) \leq \mathrm{v}\|\mathrm{u}-\mathrm{v}\|, \text { for all } \mathrm{u}, \mathrm{v} \in \mathrm{~B}, \tag{7}
\end{equation*}
$$

where $h(.,$.$) is a Hausdorff metric on \mathrm{C}(\mathrm{H})$, and $\mathrm{C}(\mathrm{H})$ denotes the family of all nonempty compact subsets of H .
2.3 Definition- A multivalued mapping $A(u, \lambda)$ defined on $B \times M$ to $C(H)$ is said to be locally α-strongly monotone if there exists a constant $\alpha>0$ such that $\left\langle\left(p_{1}, \lambda\right)-\left(p_{2}, \lambda\right), u-v\right\rangle \geq \alpha\|u-v\|^{2}$ for all $u, v \in B,\left(p_{1}, \lambda\right) \in A(u, \lambda),\left(p_{2}, \lambda\right) \in A(v, \lambda)$.
We have the following lemmas which can be proved by the techniques of Noor [3].
2.1 Lemma- A point $u \in K_{\lambda}$ is a solution of the parametric general mixed multivalued mildly nonlinear variational inequalities (4) iff it is fixed point of the map

$$
\begin{equation*}
\varphi(\mathrm{u}, \lambda)=\mathrm{u}-\mathrm{g}(\mathrm{u})+\mathrm{P}_{\mathrm{K}^{2}}[\mathrm{~g}(\mathrm{u})+\mathrm{F}(\mathrm{u})-\rho((\mathrm{p}, \lambda)+(\mathrm{q}, \lambda))] \tag{9}
\end{equation*}
$$

for all $\lambda \in \mathrm{M},(\mathrm{p}, \lambda) \in \mathrm{A}(\mathrm{u}, \lambda),(\mathrm{q}, \lambda) \in \mathrm{T}(\mathrm{u}, \lambda)$ for some $\rho>0$, where $\mathrm{P}_{\mathrm{K}_{\lambda}}$ is the projection of H on the family of closed convex sets K_{λ} and $F: H \rightarrow H$ is a single valued function defined by, for every $(p, \lambda) \in A(u, \lambda)$ and $(q, \lambda) \in T(u, \lambda)$

$$
\begin{equation*}
\langle F(u), g(v)\rangle=\langle u, g(v)\rangle-\rho\langle(p, \lambda)+(q, \lambda), g(v)\rangle-\rho b(u, g(v)) \text {, for all } g(v) \in K_{\lambda} . \tag{10}
\end{equation*}
$$

Since we are interested in the case, when the solution of the problem (4) lies in the interior of B. So we consider the map $\varphi^{*}(u, \lambda)$ define by
$\varphi^{*}(\mathrm{u}, \lambda)=\mathrm{u}-\mathrm{g}(\mathrm{u})+\mathrm{P}_{\mathrm{K} \text { ПВ }}[\mathrm{g}(\mathrm{u})+\mathrm{F}(\mathrm{u})-\rho((\mathrm{p}, \lambda)+(\mathrm{q}, \lambda))]$, for all $(\mathrm{u}, \lambda) \in \mathrm{B} \times \mathrm{M}$.
We have to show that the map $\varphi^{*}(u, \lambda)$ has a fixed point, which by (9) is also a solution of (4). First of all, we prove that the map $\varphi^{*}(u, \lambda)$ is a contraction map with respect to u, uniformly in $\lambda \in \mathrm{M}$, by using locally α-strongly monotonicity and locally β-h-Lipschitz continuity of the operator A(u, λ), locally ξ-strongly monotonicity and σ-h-Lipschitz continuity of $g(u)$ and locally v-h-Lipschitz continuity of $T(u, \lambda)$.
2.2 Lemma- For all $u_{1}, u_{2} \in B$ and $\lambda \in M$, we have

$$
\left\|\varphi^{*}\left(\mathbf{u}_{1}, \lambda\right)-\varphi^{*}\left(\mathrm{u}_{2}, \lambda\right)\right\| \leq \theta\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|
$$

where

$$
\theta=\mathrm{k}+2 \rho v+\rho \gamma+2\left(1-2 \rho \alpha+\rho^{2} \beta^{2}\right)^{1 / 2}
$$

for

$$
((1-k)(2 v+\gamma)) 4^{-1}<\alpha<\beta, \quad \mathrm{k}<1,
$$

$$
\alpha>(1-\mathrm{k})(\gamma+2 v) 4^{-1}+\left(\left(\beta^{2}-\left((2 v+\gamma) 2^{-1}\right)^{2}\right)(3-\mathrm{k})(1+\mathrm{k}) 4^{-1}\right)^{1 / 2}
$$

and
$\left|\rho-\left(\alpha+(k-1)(\gamma+2 v) 4^{-1}\right)\left(\beta^{2}-\left((2 v+\gamma) 2^{-1}\right)^{2}\right)^{-1}\right|<$
$\left.\left\{\left(\alpha+(\mathrm{k}-1)(\gamma+2 v) 4^{-1}\right)^{2}-\left(\beta^{2}-\left((2 v+\gamma) 2^{-1}\right)^{2}\right)(1+\mathrm{k})(3-\mathrm{k}) 4^{-1}\right)\right\}^{1 / 2}\left\{\beta^{2}-\left((2 v+\gamma) 2^{-1}\right)^{2}\right\}^{-1}$ with

$$
\mathrm{k}=2\left(1-2 \xi+\sigma^{2}\right)^{1 / 2}
$$

Proof- Using (11), we have

$$
\begin{gathered}
\left\|\varphi^{*}\left(\mathrm{u}_{1}, \lambda\right)-\varphi^{*}\left(\mathrm{u}_{2}, \lambda\right)\right\|=\|\left\{\mathrm{u}_{1}-\mathrm{g}\left(\mathrm{u}_{1}\right)+\mathrm{P}_{\mathrm{K}_{2}}\left[\mathrm{~g}\left(\mathrm{u}_{1}\right)+\mathrm{F}\left(\mathrm{u}_{1}\right)-\rho\left(\left(\mathrm{p}_{1}, \lambda\right)+\left(\mathrm{q}_{1}, \lambda\right)\right)\right]\right\} \\
-\left\{\mathrm{u}_{2}-\mathrm{g}\left(\mathrm{u}_{2}\right)+\mathrm{P}_{\mathrm{K}_{2}}\left[\mathrm{~g}\left(\mathrm{u}_{2}\right)+\mathrm{F}\left(\mathrm{u}_{2}\right)-\rho\left(\left(\mathrm{p}_{2}, \lambda\right)+\left(\mathrm{q}_{2}, \lambda\right)\right)\right]\right\} \|
\end{gathered}
$$

and using the fact that the projection operator is nonexpansive, we have

$$
\begin{array}{r}
\left\|\varphi^{*}\left(\mathrm{u}_{1}, \lambda\right)-\varphi^{*}\left(\mathrm{u}_{2}, \lambda\right)\right\| \leq 2\left\|\mathrm{u}_{1}-\mathrm{u}_{2}-\left(\mathrm{g}\left(\mathrm{u}_{1}\right)-\mathrm{g}\left(\mathrm{u}_{2}\right)\right)\right\|+\left\|\mathrm{F}\left(\mathrm{u}_{1}\right)-\mathrm{F}\left(\mathrm{u}_{2}\right)\right\| \\
+\left\|\mathrm{u}_{1}-\mathrm{u}_{2}-\rho\left(\left(\mathrm{p}_{1}, \lambda\right)-\left(\mathrm{p}_{2}, \lambda\right)\right)\right\|+\rho\left\|\left(\mathrm{q}_{1}, \lambda\right)-\left(\mathrm{q}_{2}, \lambda\right)\right\| . \tag{12}
\end{array}
$$

Now, the operator $\mathrm{g}(\mathrm{u})$ is both locally ξ-strongly monotone and σ-h-Lipschitz continuous and the operator $\mathrm{A}(\mathrm{u}, \lambda)$ is locally α-strongly monotone and locally β-hLipschitz continuous, so by the method of Noor [2],

$$
\begin{align*}
\left\|u_{1}-u_{2}-\left(g\left(u_{1}\right)-g\left(u_{2}\right)\right)\right\|^{2} & =\left\|u_{1}-u_{2}\right\|^{2}+\left\|g\left(u_{1}\right)-g\left(u_{2}\right)\right\|^{2}-2\left\langle g\left(u_{1}\right)-g\left(u_{2}\right), u_{1}-u_{2}\right\rangle \\
& \leq\left(1-2 \xi+\sigma^{2}\right)\left\|u_{1}-u_{2}\right\|^{2}, \tag{13}
\end{align*}
$$

where σ and ξ are Lipschitz and strongly monotone constants of $g(u)$, respectively and

$$
\begin{aligned}
\left\langle\mathrm{F}\left(\mathrm{u}_{1}\right)-\mathrm{F}\left(\mathrm{u}_{2}\right), \mathrm{g}(\mathrm{v})\right\rangle & =\left\langle\mathrm{u}_{1}-\mathrm{u}_{2}, \mathrm{~g}(\mathrm{v})\right\rangle-\rho\left\langle\left(\mathrm{p}_{1}, \lambda\right)-\left(\mathrm{p}_{2}, \lambda\right), \mathrm{g}(\mathrm{v})\right\rangle \\
& -\rho\left\langle\left(\mathrm{q}_{1}, \lambda\right)-\left(\mathrm{q}_{2}, \lambda\right), \mathrm{g}(\mathrm{v})\right\rangle-\rho \mathrm{b}\left(\mathrm{u}_{1}-\mathrm{u}_{2}, \mathrm{~g}(\mathrm{v})\right)
\end{aligned}
$$

$$
\begin{gathered}
\leq\left\{\left\|u_{1}-u_{2}-\rho\left(\left(p_{1}, \lambda\right)-\left(p_{2}, \lambda\right)\right)\right\|+\rho\left\|\left(q_{1}, \lambda\right)-\left(q_{2}, \lambda\right)\right\|+\rho \gamma\left\|u_{1}-u_{2}\right\|\right\}\|g(v)\| \\
\leq\left\{\left(1-2 \alpha \rho+\rho^{2} \beta^{2}\right)^{1 / 2}+\rho v+\rho \gamma\right\}\left\|u_{1}-u_{2}\right\|\|g(v)\| .
\end{gathered}
$$

Now
$\left\|\mathrm{F}\left(\mathrm{u}_{1}\right)-\mathrm{F}\left(\mathrm{u}_{2}\right)\right\|=\sup _{\mathrm{g}(\mathrm{v}) \in \mathrm{K}}\left\{\left\langle\mathrm{F}\left(\mathrm{u}_{1}\right)-\mathrm{F}\left(\mathrm{u}_{2}\right), \mathrm{g}(\mathrm{v})\right\rangle /\|\mathrm{g}(\mathrm{v})\|\right\}$

$$
\begin{equation*}
\leq\left\{\left(1-2 \alpha \rho+\rho^{2} \beta^{2}\right)^{1 / 2}+\rho v+\rho \gamma\right\}\left\|u_{1}-u_{2}\right\| \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|u_{1}-u_{2}-\rho\left(\left(p_{1}, \lambda\right)-\left(p_{2}, \lambda\right)\right)\right\|^{2} & =\left\|u_{1}-u_{2}\right\|^{2}+\rho^{2}\left\|\left(p_{1}, \lambda\right)-\left(p_{2}, \lambda\right)\right\|^{2} \\
& -2 \rho\left\langle u_{1}-u_{2},\left(p_{1}, \lambda\right)-\left(p_{2}, \lambda\right)\right\rangle . \tag{15}
\end{align*}
$$

Using (6) and (8), we have

$$
\begin{gathered}
\left\|\left(\mathrm{p}_{1}, \lambda\right)-\left(\mathrm{p}_{2}, \lambda\right)\right\| \leq \mathrm{h}\left(\mathrm{~A}\left(\mathrm{u}_{1}, \lambda\right), \mathrm{A}\left(\mathrm{u}_{2}, \lambda\right)\right) \leq \beta\left\|\mathrm{u}_{1}-\mathrm{u}_{2}\right\| \\
\left\langle\mathrm{u}_{1}-\mathrm{u}_{2},\left(\mathrm{p}_{1}, \lambda\right)-\left(\mathrm{p}_{2}, \lambda\right)\right\rangle \geq \alpha\left\|\mathrm{u}_{1}-\mathrm{u}_{2}\right\|^{2} .
\end{gathered}
$$

Therefore (15) becomes

$$
\begin{align*}
\left\|u_{1}-u_{2}-\rho\left(\left(p_{1}, \lambda\right)-\left(p_{2}, \lambda\right)\right)\right\|^{2} & \leq\left\|u_{1}-u_{2}\right\|^{2}+\rho^{2} \beta^{2}\left\|u_{1}-u_{2}\right\|^{2}-2 \rho \alpha\left\|u_{1}-u_{2}\right\|^{2} \\
& \leq\left(1-2 \alpha \rho+\rho^{2} \beta^{2}\right)\left\|u_{1}-u_{2}\right\|^{2} \tag{16}
\end{align*}
$$

where β and α are the constants appearing in (5), (6), again

$$
\begin{equation*}
\left\|\left(\mathrm{q}_{1}, \lambda\right)-\left(\mathrm{q}_{2}, \lambda\right)\right\| \leq \mathrm{h}\left(\mathrm{~T}\left(\mathrm{u}_{1}, \lambda\right), \mathrm{T}\left(\mathrm{u}_{2}, \lambda\right)\right) \leq v\left\|\mathrm{u}_{1}-\mathrm{u}_{2}\right\| . \tag{17}
\end{equation*}
$$

Since $T(u, \lambda)$ is locally v-h-Lipschitz continuous, using (13)-(17), we have

$$
\left\|\varphi^{*}\left(\mathrm{u}_{1}, \lambda\right)-\varphi^{*}\left(\mathrm{u}_{2}, \lambda\right)\right\| \leq \theta\left\|\mathrm{u}_{1}-\mathrm{u}_{2}\right\|
$$

where

$$
\theta=\mathrm{k}+2 \rho v+\rho \gamma+2\left(1-2 \rho \alpha+\rho^{2} \beta^{2}\right)^{1 / 2}
$$

with

$$
\mathrm{k}=2\left(1-2 \xi+\sigma^{2}\right)^{1 / 2}
$$

Now, using the technique of Noor [3], we can show that $\theta<1$ from which it follows that the map $\varphi^{*}(u, \lambda)$ defined by (11) is a contraction map.
2.1 Remark- From Lemma 2.2, It is clear that the map $\varphi^{*}(\mathrm{u}, \lambda)$ defined by (11) has a unique fixed point $u(\lambda)$ that is $u(\lambda)=\varphi^{*}(u, \lambda)$, we also know by assumption, the function $\overline{\mathrm{u}}$ for $\lambda=\bar{\lambda}$ is a solution of the parametric general mixed multivalued mildly nonlinear variational inequality problem (4), we see that \bar{u} is a fixed point of $\varphi(u, \lambda)$ and it is also a fixed point of $\varphi^{*}(u, \lambda)$, consequently we have $u(\bar{\lambda})=u=\varphi^{*}(u(\lambda), \lambda)$, now we show that the solution $u(\lambda)$ of problem (4) is β-h-Lipschitz continuous.
2.3 Lemma- If $T(\bar{u}, \lambda), A(\bar{u}, \lambda)$ is the multivalued operators and the map

$$
\lambda \rightarrow \mathrm{P}_{\mathrm{K} \cap \mathrm{nB}}[\mathrm{~g}(\overline{\mathrm{u})}+\overline{\mathrm{F}(\overline{\mathrm{u}})-\rho((\overline{\mathrm{p}, \lambda})+(\overline{\mathrm{q}}, \bar{\lambda}))], ~}
$$

are β-h- Lipschitz continuous in λ at $\bar{\lambda}$, then $u(\lambda)$ is β-h- Lipschitz continuous at $\lambda=\bar{\lambda}$.
Proof- Fix $\lambda \in \mathrm{M}$, then using the triangle inequality and Lemma 2.2, we have

$$
\begin{gather*}
\left.\|u(\lambda)-\bar{u}(\bar{\lambda})\| \leq \| \varphi^{*}(u(\lambda), \lambda)-\varphi^{*}(\bar{u} \bar{\lambda}), \lambda\right)\|+\| \varphi^{*}(\bar{u}(\bar{\lambda}), \lambda)-\varphi^{*}(\bar{u}(\lambda), \bar{\lambda}) \| \\
\leq \theta\|u(\lambda)-u(\bar{\lambda})\|+\left\|\varphi^{*}(\bar{u}(\bar{\lambda}), \lambda)-\varphi^{*}(\bar{u}(\bar{\lambda}), \bar{\lambda})\right\| . \tag{18}
\end{gather*}
$$

From (11) and the fact that the projection operator is nonexpansive, we have

$$
\begin{align*}
& \left.\left\|\varphi^{*}(\mathrm{u}(\bar{\lambda}), \lambda)-\varphi^{*}(\mathrm{u}(\bar{\lambda}), \bar{\lambda})\right\|=\| \mathrm{P}_{\text {К } \cap \text { в }}[\mathrm{g}(\mathrm{u}(\overline{\lambda)})+\mathrm{F}(\mathrm{u}(\bar{\lambda}))-\rho((\overline{\mathrm{p}} \bar{\lambda}), \lambda)+(\mathrm{q} \bar{\lambda}), \lambda))\right] \\
& \left.-\mathrm{P}_{\text {К } \text { АВ }}[\mathrm{g}(\mathrm{u}(\bar{\lambda}))+\mathrm{F}(\mathrm{u}(\bar{\lambda}))-\rho((\mathrm{p} \bar{\lambda}), \bar{\lambda})+(\mathrm{q}(\bar{\lambda}), \bar{\lambda}))\right] \| \\
& \leq \rho \|(\mathrm{p}(\bar{\lambda}), \lambda)-(\overline{\mathrm{p}} \bar{\lambda}), \bar{\lambda})\|+\rho\|(\mathrm{q}(\bar{\lambda}), \lambda)-(\mathrm{q}(\bar{\lambda}), \bar{\lambda}) \| \\
& +\| \mathrm{P}_{\text {K АВ }}[\mathrm{g}(\mathrm{u}(\bar{\lambda}))+\mathrm{F}(\mathrm{u}(\bar{\lambda}))-\rho((\mathrm{p}(\bar{\lambda}), \bar{\lambda})+(\mathrm{q}(\bar{\lambda}), \bar{\lambda}))] \\
& -P_{\text {K } \overline{\Lambda^{\text {в }}}}[\mathrm{g}(\mathrm{u}(\bar{\lambda}))+\mathrm{F}(\overline{\mathrm{u}(\lambda)})-\rho((\mathrm{p}(\bar{\lambda}), \bar{\lambda})+(\mathrm{q}(\bar{\lambda}), \bar{\lambda}))] \| . \tag{19}
\end{align*}
$$

Now from Remark 2.1 and combining (18) and (19), we have

$$
\begin{aligned}
\|\mathrm{u}(\lambda)-\overline{\mathrm{u}}\| \leq & \rho(1-\theta)^{-1}\|(\mathrm{p}(\lambda), \lambda)-(\mathrm{p}(\bar{\lambda}), \bar{\lambda})\|+\rho(1-\theta)^{-1}\|(\mathrm{q}(\lambda), \lambda)-(\mathrm{q}(\bar{\lambda}), \bar{\lambda})\| \\
& +\rho(1-\theta)^{-1} \| \mathrm{P}_{\text {K גВ }}[\mathrm{g}(\overline{\mathrm{u}})+\mathrm{F}(\overline{\mathrm{u}})-\rho((\mathrm{p}(\bar{\lambda}), \bar{\lambda})+(\mathrm{q}(\bar{\lambda}), \bar{\lambda}))]
\end{aligned}
$$

$$
-\mathrm{P}_{\mathrm{K}} \overline{\lambda \cap B}[\mathrm{~g}(\overline{\mathrm{u}})+\mathrm{F}(\overline{\mathrm{u}})-\rho((\mathrm{p}(\lambda), \bar{\lambda})+(\mathrm{q}(\bar{\lambda}), \bar{\lambda}))] \| .
$$

From which the required result follows:
Using the technique of Dafermos [1], we can show that there exists a neighbourhood N containing in M of $\bar{\lambda}$ such that for $\lambda \in N, u(\lambda)$ is the unique solution of problem (4) in the interior of B .

Combining the above results we arrive at the following:
2.1 Theorem- Let \bar{u} be the solution of parametric general mixed multivalued mildly nonlinear variational inequality problem (4) at $\lambda=\lambda$, the multivalued mappingT(u, λ) be locally v-h-Lipschitz continuous and the multivalued mapping $A(\bar{u}, \lambda)$ be locally $\alpha-$ strongly monotone and locally β-h-Lipschitz continuous, the map $g(\bar{u})$ be locally ξ strongly monotone and σ-h-Lipschitz continuous.
Suppose that $T(\bar{u}, \lambda), A(\bar{u}, \lambda), g(\bar{u})$ and the map

$$
\left.\left.\lambda \rightarrow \mathrm{P}_{\mathrm{K} \text { K } \cap \mathrm{B}}[\mathrm{~g} \overline{\mathrm{u}})+\overline{\mathrm{F}(\mathrm{u})}-\rho \overline{((\mathrm{p}, \bar{\lambda})}+\overline{(\mathrm{q}}, \overline{\lambda)}\right)\right]
$$

are β-h-Lipschitz continuous at $\lambda=\lambda$, then there exists a neighbourhood N containing in M of λ such that for $\lambda \in N$, the problem (4) has a unique solution $u(\lambda)$ in the interior of $\mathrm{B}, \mathrm{u}(\bar{\lambda})=\overline{\mathrm{u}}$ and $\mathrm{u}(\lambda)$ are continuous $(\beta$-h-Lipschitz continuous) at $\lambda=\bar{\lambda}$.
2.2 Remark- The function $u(\lambda)$ as defined in Theorem 2.1 is continuously differentiable on some neighbourhood N of λ. For this see Dafermos [1].

3. REFERENCES

1. S. Dafermos, Sensitivity analysis in variational inequalities, Math.Oper. Res. 13, 421434, (1988).
2. M. A. Noor, An iterative scheme for a class of quasivariational inequalities, J. Math. Anal. Appl. 110, 463-468, (1985).
3. M. A. Noor, On a class of variational inequalities, J. Math. Anal. Appl. 128, 138155, (1987).
4. A. H. Siddiqi and R. Ahmad, On generalized complementarity problem, Math.

Comput. Appl. 2(1), 31-43, (1997).
5. R. L. Tobin, Sensitivity analysis for variational inequalities, J. Optim. Theo. Appl. 48, 191-204, (1986).
6. H. L. Verma and R. N. Mukherjee, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167, 299-304, (1992).

