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Abstract- Dafermos [1] studied the sensitivity properties of solutions of a variational
inequality with respect to a parameter A In this paper, we extend this analysis for
general mixed multivalued mildly nonlinear variational inequalities in the setting of
Hilbert spaces.
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1. INTRODUCTION

Dafermos [1] studied the sensitivity property of solutions of a particular kind of
variational inequality on a parameter which takes values on an open subset of Euclidean
space R, Siddiqi et al [4], Tobin [5], Verma et al [6] studied the sensitivity analysis of
various types of variational inequalities.

Let H be a Hilbert space and D be a nonempty closed and convex subset of H.
Let A,T:D — 2" be the multivalued mappings. We consider the problem of finding
ueD, peA(u), qeT(u) such that g(u)eD

(g(v)—g(u),p+q) +bu, gv)) - b(u, g(w) =0, for all g(v) eD, (1)
where b(.,.) : H xH— R satisfying the following properties:
(1) b(.,.) is linear in the first argument;
(1) b(.,.) is bounded, that is there exists constant y >0 such that
b(w,v)| <7 ||| ||v|, forallu,v eH; (2)
(ii1) |b(.,.)| is either convex or linear in the second argument;
(iv) for every u,v,w eH
|b(u,v) — b(u,w)| < b(u,v —w) (3)
b(u, v £ w) <b(u,v) + b(u,w).
In this paper, we study the sensitivity analysis of general mixed multivalued mildly
nonlinear variational inequality problem (GMMMNVIP) of the type (1).

2. SENSITIVITY ANALYSIS

To formulate the problem, let M be an open subset of H in which the parameter
A takes values and assume that {K;: A eM} is a family of closed convex subset of H.
The parametric general mixed multivalued mildly nonlinear variational inequality is to
find ueD, (p, M)eA(u, X), (q, A )eT(u, A) such that g(u)eKj,
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(g(v) = g(u), (p, 1) +(q, 1)) + b(u, g(v)) — b(u, g(u)) = 0, for all g(v)eKy 4
where A(u, A) and T(u, A) are multivalued mappings, which are define on the set (u, 1)
with A eM. We also assume that for some AeM, the problem (4) admits a solution u.
We want to investigate those conditions under which, for each A is a neighbourhood of
A. The problem (4) has a unique solution u(A) near u and the function u(A) is continuous
and differentiable. We assume that B is the closure of a ball in H centered at .

We need the following concepts.
2.1 Definition- An operator g defined on B to H is said to be locally, u,ve B,
(1) &-strongly monotone, if there exists a constant & >0 such that

(g —gW,u—v) 2&[u-v| (5)
(i1) o-h-Lipschitz continuous, if there exists a constant ¢ >0 such that
g —gW) |l <cflu-vl. (6)

In particular, it follows that < c.
2.2 Definition- A multivalued mapping T(u, 1) defined on BxM to C(H) is said to be
locally v-h-Lipschitz continuous, if there exists a constant v >0 such that

h(T(u,A), T(v,A)) < v ||u—v]|, for all u,veB, (7)
where h(.,.) is a Hausdorff metric on C(H), and C(H) denotes the family of all nonempty
compact subsets of H.
2.3 Definition- A multivalued mapping A(u,A) defined on BxM to C(H) is said to be
locally a-strongly monotone if there exists a constant o >0 such that
{(p1, ) = (p2, M), u—v) > o ||u—v | for all u,veB, (p1,A)eAWL), (p2.)eAV,L).  (8)
We have the following lemmas which can be proved by the techniques of Noor [3].
2.1 Lemma- A point uek, is a solution of the parametric general mixed multivalued
mildly nonlinear variational inequalities (4) iff it is fixed point of the map

¢(u, ) = u - g(u) + Py, [g(w) + F(w) - p((p, 1) + (g, V)] 9)

for all AeM, (p, A)eA(u, L), (q, A)eT(u, L) for some p >0, where Py, is the projection of
H on the family of closed convex sets K; and F:H—H is a single valued function
defined by, for every (p, A)eA(u, A) and (q, A)eT(u, A)

(F(u), g(v)) = (u, g(v)) = p (P, ) +(q, M), g(v)) — pb(u, g(v)), for all g(v) € K;. (10)
Since we are interested in the case, when the solution of the problem (4) lies in the
interior of B. So we consider the map ¢*(u, A) define by

@*(u, 1) =u — g(u) + P [g(u) + F(w) — p((p, M) * (g, A))], for all (u, )eBxM.  (11)
We have to show that the map ¢*(u, A) has a fixed point, which by (9) is also a solution
of (4). First of all, we prove that the map ¢*(u, 1) is a contraction map with respect to u,
uniformly in AeM, by using locally a-strongly monotonicity and locally B-h-Lipschitz
continuity of the operator A(u,A), locally &-strongly monotonicity and o-h-Lipschitz
continuity of g(u) and locally v-h-Lipschitz continuity of T(u,1A).
2.2 Lemma- For all u;, u,eB and AeM, we have
I o*(u,A) — ¢*(u2,A) [[ <6 flup —uy |

where 0=k +2pv + py + 2( 1-2pa + ppH)"?
for

(1-)u+y) 4" <a <P, k<1,
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a> (1-k)(y +2v) 47" + (B> (v + ) 27) )3 —k)(1+ k) 4 '?
and

Ip— (0+ (k=1)(y +20) 4 )= (v +7) 27)*) | <

{(a+ (k=1)(y +20) 4% = (B> = (v + 12 H )1+ K)GB-k)4 ) } (B2 = (v +7)27H )
with
k=2(1-28+0%)"
Proof- Using (11), we have
I o*(ui, ) = @*(uz, A) || = [| {u1 — g(w) + P [g(ur) + F(ur) = p ((p1,1) + (q1,0)]}

—{uz2—g(up) + Pk, [g(u2) + F(u2) — p ((p2,1) + (q2,M)]} |
and using the fact that the projection operator is nonexpansive, we have

I 0*(ui, M) = @*(uz, M) | < 2 | wi — 2= (g(w) — g(u))| + [[F(ur) = F(w)
+ lur—u2—p ((pr, ) — (2, M| + p[I(qr, A) = (q2, V|- (12)

Now, the operator g(u) is both locally &-strongly monotone and o-h-Lipschitz
continuous and the operator A(u, A) is locally a-strongly monotone and locally B-h-
Lipschitz continuous, so by the method of Noor [2],

| u—w— (gun) — g)))|> =l u —ua |+ || glur) — g(u2) |* - 2 (glur) — g(u2), uj—wz )
<(1-28+0) lu-u? (13)

where ¢ and § are Lipschitz and strongly monotone constants of g(u), respectively and
(F(u) - F(ug), g(v)) = (wi—uz, g(v)) = p ((p1, ) = (p2, 1), g(v))
—p (i, ) = (g2, 1), g(v)) — p b(ur — w2, g(V))

< {fu=uw=p ((P1, M) = (P2, AN+ o [ (1, ) = (q2, M|+ py [ wi— w2 || }]] g(v) ||
< {(1-20p +p’B)'"? +pu +py} [[ui— wl || gv) |l

Now
| F(u1) — F(u2) [| = sup gwex {{F(u1) — F(u2), g(v)) /[ &(v) [}

< {(1-20p +p’B)'"* + pv +py} [ u—uz | (14)
and
ui— w—p((P1, 1) — (2, W > = [l ui— w2 [P+ p* || (p1, A) — (P2, VI
—2p (ur—uy, (p1, A) — (p2, V). (15)

Using (6) and (8), we have
I (p1, &) = (p2, V|| < h(A(uy, 1), A(uz, 1)) < B [ ur— vz |

(ur—uz, (pr, A) = (P2 M) Z [ w1 — wglf* .
Therefore (15) becomes

| ui—w—p ((p1, &) — (2, V) IP< | u—wa | + 9221322 | ur —ua | ;- 2pa || u—us |
<(I=20p+p B ) [[ur— ua (16)
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where B and a are the constants appearing in (5), (6), again

I (@1, &) = (g2, M) || <h(T(uy, &), T(uz, 1)) <v [ ug— vz . (17)
Since T(u, A) is locally v-h-Lipschitz continuous, using (13)-(17), we have

[ @*(ui,}) —@*(uz M) [[ < O [ ur — w2 |
where 0=k+2pv+py+2(1-2pa+ppH)”
with

k=2(1-2t+c%"

Now, using the technique of Noor [3], we can show that 0 <1 from which it follows that
the map @*(u, A) defined by (11) is a contraction map.
2.1 Remark- From Lemma 2.2, It is clear that the map ¢*(u, A) defined by (11) has a
unique fixed point u(A) that is u(A) = ¢*(u,A), we also know by assumption, the function
u for A = A is a solution of the parametric general mixed multivalued mildly nonlinear
variational inequality problem (4), we see thatu is a fixed point of @(u, A) and it is also
a fixed point of ¢*(u, A), consequently we have u(LA) =u = ¢*(u(r), A), now we show
that the solution u(A) of problem (4) is B-h-Lipschitz continuous.

2.3 Lemma- If T(u, A),A(u, ) is the multivalued operators and the map

A = Pion [ g(W) + F@)- p((p, ) +(q, )]
are 3-h- Lipschitz continuous in A at "X, then u(}A) is B-h- Lipschitz continuous at A="%.
Proof- Fix A M, then using the triangle inequality and Lemma 2.2, we have

@) —u)]| <[ @*u), 1) — ¢*ud), V) || + || 9*(u(d), 1) — ¢*u(d), 1) |

<6 lu@® —u@) [+ [ ¢*(@), 1) — o*(u(d), 1) . (18)
From (11) and the fact that the projection operator is nonexpansive, we have

I @*u), M) = @*(uh), 1) [| = || Picow [g(u(R)) + F(u®)) = p((p(h), 1) + (a(R), W)]
— Pion [gMW) + FQO) —p (M) 1) + (@A), W]
< p (P D)~ (A D) [+ p [l (@A) 1)~ (@), 1)
+ | Proon [2u() + F@Q)) = p (M), 1) + (a2, W]
~ P [2(U0)) + F@OY) — p((p(R), 1) + @), M- (19)
Now from Remark 2.1 and combining (18) and (19), we have
1) = (| < p(1=0)" [[(pT). )~ (p(). B ||+ p(1- )" || (qTF). 1) — (@(®). T |

+p (1=0)" || Pic s [2(0) + FQw) - p((p(R), 2) +Ha(R), M))]
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—Pros [g@) + F(W) - p((p(R), 1) + (qTR), A ]I -

From which the required result follows:

Using the technique of Dafermos [1], we can show that there exists a neighbourhood N
containing in M of X such that for AeN, u(}) is the unique solution of problem (4) in the
interior of B.

Combining the above results we arrive at the following:

2.1 Theorem- Let u be the solution of parametric general mixed multivalued mildly
nonlinear variational inequality problem (4) at A =&, the multivalued mappingT(u, 1)
be locally v-h-Lipschitz continuous and the multivalued mapping A(u, A) be locally a-
strongly monotone and locally B-h-Lipschitz continuous, the map g(u) be locally &-
strongly monotone and c-h-Lipschitz continuous.

Suppose that T(u, 1), A(u, X), g(u) and the map

A = P [g(0) +F()—p((p, )+ (g, V)]
are B-h-Lipschitz continuous at A =X, then there exists a neighbourhood N containing in
M of A such that for AeN, the problem (4) has a unique solution u(A) in the interior of

B, u(}) = uand u(}) are continuous ( B-h-Lipschitz continuous) at A = A.

2.2 Remark- The function u(A) as defined in Theorem 2.1 is continuously differentiable
on some neighbourhood N of A . For this see Dafermos [1].
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