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Abstract– The dynamic treatment of one-dimensional generalized thermoelastic 

problem of heat conduction is made for a layered thin plate, which is exposed, to a 

uniform thermal shock. The basic equations are transformed by Laplace transform and 

solved by a direct method. The solution was applied for a plate of sandwich structure. 

The inverses of Laplace transforms are obtained numerically. The temperature, the 

stress and the displacement distributions are represented in graphs, which show the 

coupled and the generalized cases. 
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1. INTRODUCTION 

 Lord and Shulman [1] obtained the governing equations of generalized 

thermoelasticity involving one relaxation time for isotropic homogeneous media. These 

equations predict finite speeds of propagation of heat and displacement distribution, the 

corresponding equations for an isotropic case were obtained by Dhaliwal and Sherief 

[2]. Due to the complexity of the governing equations and the mathematical difficulties 

associated with their solution several simplifications have been used. For example some 

authors [3,4] use the framework of coupled thermoelastic\city where the relaxation time 

is taken as zero resulting in a parabolic system of partial differential equations. The 

solution of this system exhibits infinite speed of propagation of heat signals 

contradictory to physical observation. Some other authors use still further 

simplifications by ignoring the inertia effects in a coupled theory [5] or by neglecting 

the coupling effect. 

 This work deals with a plate consisting of layers of unidentical substances, each of 

which is homogeneous and isotropic. When this plate, which is initially at rest and 

having a uniform temperature, is suddenly heated at the free surfaces, a heat flow occurs 

in the plate and change in thermal and the mechanical field is brought about. 

 

2. THE BASIC EQUATIONS 

 The coordinate system is so chosen that the x-axis is taken perpendicularly to the 

layer, and the y-and z-axes in parallel. We are dealing with one-dimensional generalized 

thermoelasticity with one relaxation time. 

The equation of motion 
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The constitutive equation  
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The heat equation 
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The above equations can be put into a more convenient form by using the following 

non-dimensional variables  
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After dropping the primes for convenience, we obtain  
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Taking Laplace transform as define  
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Then, equations (4), (5) and (6) will take the forms 
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By eliminating e , we get 
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Using the above two equations, we obtain 
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3. APPLICATION 

 Considering a layered plat of sand-witch structure such as shown in Figure 1, 

where layers I , III made from the same metal, and the layer II is a deferent metal. 

Layer II is put in the middle of the plate, and its thickness is a half of that of the plate. 

 

 

 

 

                              l2x −=    l−=x                           l=x          l2x =  

 
                                        I                      II                      III 

 

 (Figure.1) 

 

1-In region I where ll −≤≤− x2  

 The solution of the equations (12) and (13) take the form 

 ( ) ( ) ( ) ( )xkcoshskAxkcoshskA 2

22

221

22

11

I −+−=θ , (14) 

 ( ) ( )xkcoshsAxkcoshsA 2

2

21

2

1

I
+=σ , (15) 

where the parameters 1k and 2k satisfy the equation 
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2- In region II where ll ≤≤− x  

 The solution of the equations (12) and (13) take the form 
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where the parameters 1p and 2p satisfy the equation 
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1- In region III where ll 2x ≤≤  

 The solution of the equations (12) and (13) take the form 
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The Boundary Conditions:   

 (1)- The thermal boundary conditions 

         ( )tHoθ=θ  for l2x ±= , 

which takes the form 

         
s
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 (2)- The mechanical boundary conditions 

          0=σ  for l2x ±= , 

which takes the form 

          0=σ  for l2x ±= . (21) 

 (3)- The continuity conditions 
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 Applying the pervious conditions into equations (14)-(19), we obtain  
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 We can get the displacement by using equation (4), such that 

 σ= D
s
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so, we obtain 
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4. THE SOLUTION IN THE PHYSICAL DOMAIN 

 In order to invert the Laplace transform in equations (24)-(29), we adopt a 

numerical inversion method based on a Fourier series expansion [6]. 

 By this method the inverse )t(f of the Laplace transform ( )sf  is approximated by  
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where N is a sufficiently large integer representing the number of terms in the truncated 

Fourier series, chosen such that 
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where ε1 is a prescribed small positive number that corresponds to the degree of 

accuracy required. The parameter c is a positive free parameter that must be greater than 

the real part of all the singularities of ( )sf . 

 The optimal choice of c was obtained according to the criteria described in [7]. 

 The copper material and the type 316 stainless steel are chosen for purposes of 

numerical evaluations [6], [8]. 

  

 

Table1. Material constant  

The constant Copper Stainless steel 

Thermal expansion 6
10x

−  

Mass density 3
10x  

Heat capacity 3
10x  

Thermal conductivity 

Poisson’s ratio 

Relaxation time 

ε  

8.17  

95.8  

3831.0  

386  

343.0  

02.0  

0150.0  

7.17  

97.7  

560.0  

5.19  

294.0  

015.0  

0141.0  

 

 The computations were carried out for value of time, namely t = 0.2 and for 

length 1=l (unit length) 

 The numerical values of the temperature, displacement component and stress 

component for the two cases, coupled and generalized are obtained and represented 

graphically. 
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Figure 2: Temperature Distribution
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Figure 3: Displacement Distribution
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Figure 4: The Displacement Distribution
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Nomenclature 

 

µλ ,  Lame’s constants 

ρ  Density 

EC  Specific heat at constant strain 

t  Time 

0τ  One relaxation time  

T  Absolute temperature 

0T  Reference temperature 

σ  Components of stress tensor  

e  Components of strain tensor 

u  Components of displacement vector 

k  Thermal conductivity 

tα  Thermal expansion 
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