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Abstract-A perturbation method, the Lindstedt-Poincare method, is used to obtain the 

asymptotic expansions of the solutions of a nonlinear differential equation arising in 

general relativity. The asymptotic solutions contain no secular term, which overcomes a 

defect in Khuri’s paper. A technique of numerical order verification is applied to 

demonstrate that the asymptotic solutions are uniformly valid for small parameter.  
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1. INTRODUCTION 

Asymptotic solutions for nonlinear differential equations by perturbation methods are 

formally in the form of a power series of small parameter ε : 
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Usually, the N-th order approximation is to choose a truncation of Eq.(1): 
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A major objective of perturbation methods is to show that the obtained expansion (1) is 

uniformly valid, that is, the error committed by truncating the series after N+1 terms is 

of order O(ε
N+1

). Typically, one chooses a few test cases and compares the asymptotic 

solution to either the exact solution (if available) or the numerical solution to show that 

the error is relatively small. However, such few comparisons are insufficient to 

demonstrate the asymptotic expansion is accurate to a specified order. Although the 

quantitative error may be small, it does not become small at the rate expected [1, 2]. 

Therefore, one needs to further verify that the solution is indeed asymptotic accurate to 

the order to which it is constructed. 

This paper will focus on a nonlinear differential equation arising in general relativity 

[3]: 
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where dots denote differentiation with respect to t, and c is a constant. The order of the 

accuracy of the asymptotic expansions of Eq.(3) has been verified by Khuri [4], but we 

note that the reversion method is adopt there and the consequent expansion contains a 
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secular term εt sint, which is effective only for small t and small parameter ε. In fact, it 

is easy to verify that the first order approximate solution in Ref.[4] is no longer effective 

when εt>0.5. In this paper, firstly, the Lindstedt-Poincare method [1] is used to obtain 

the asymptotic expansions of the solutions of Eq.(3), which is effective for small ε and 

arbitrary t. Secondly, a technique of numerical order verification, first proposed by 

Bosley [2], is applied to verify the quantitative accuracy as well as the order of the 

accuracy of the asymptotic solutions. Furthermore, a modification of the technique of 

Bosley is also made. Instead of only one fixed point t=t0 in Refs.[2, 4-7], an average 

error is defined at finite fixed points t=ti(i=1,2,…,m) to give a proper evaluation of the 

error between the asymptotic and numerical solutions. Finally, numerical verification 

shows that the asymptotic solutions are uniformly valid for small parameter ε. 

 

2. ASYMPTOIC EXPANSIONS OF SOLUTIONS 

Consider Eq.(3) with the initial conditions 
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According to the standard Lindstedt-Poincare method [1], a new variable 

τ=ωt                                                        (5) 

is introduced, in which ω is frequency of the system. Eq.(3) then becomes 
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where primes denote differentiation with respect to τ. Both unknowns u and ω are 

usually expanded in powers of ε, that is 

∑
∞

=

τε=
0n

n

n

asym )(uu                                                (7) 

L+ωε+ωε+=ωε=ω ∑
∞

=

2

2

1

0n

n

n 1                                   (8) 

Substituting Eqs.(7) and (8) into Eq.(6) and equating coefficients of like powers of ε 

yields the first three equations: 
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The initial conditions (4) are replaced by 

,a)0(u 0 =  0)0(u 0 =′                                             (12) 
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,0)0(u n = L,2,1n,0)0(u n ==′                                    (13) 

The solution of Eq.(9) with initial conditions (12) is 

    u0=a cosτ + c                                                  (14) 

Then Eq.(10) becomes 
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To eliminate the secular term from the particular solution for u1, the coefficient of 

cosτin the right-hand side of Eq.(15) must vanish, that is, 2a(1+ω1)=0, which is used to 

determine ω1= -1. Then the solution of Eq.(10) with initial conditions (13) (n=1) is 
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Substituting Eqs.(14) , (16) and ω1= -1 into Eq.(11), one obtains 
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Similarly, to eliminate the secular term from the particular solution for u2, the 

coefficient of cosτ in the right-hand side of Eq.(17) must vanish, that is, 

0ac12ac18a5 2

223
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solution of Eq.(11) with initial conditions (13) (n=2) is 
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Therefore, the second order approximate solution of Eqs.(3) and (4) is: 
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where u0, u1, and u2 are determined by Eqs.(14), (16) and (18) respectively, and 
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3. NUMERICAL ORDER VERIFICATION OF ASYMPTOTIC EXPANSIONS 

We first give a brief introduction of the technique of Bosley [2]. Assume that the 
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asymptotic expansion of the solution of a nonlinear equation is 
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The error of the asymptotic expansion is 
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where K is a constant. Taking the logarithm of both sides of Eq.(22) yields 

ε++== log)1N(Klog)Elog()Errorlog( N . 

If EN is of order O(ε
N+1

) for a fixed t=t0 and for small values of ε, the value of log(EN) 

as a function of log ε should be linear with slope N+1. Therefore, when we graph 

log(EN) versus log ε for different values of ε, these points should be nearly on a line and 

the linear equation that interpolates these points using a linear least-squares fit should 

have slope N+1. 

In this paper, instead of Eq.(22) with a fixed t=t0, an average error is introduced:  
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where ti are fixed points in the concerned domain of t. Such modification can give a 

better overall estimation of difference between the exact (or numerical) and asymptotic 

solutions on the domain of interest. 

To verify the order of asymptotic expansion (19), we first find the numerical solutions 

of Eqs.(3) and (4) with a=1, c=1, ti =i, i=1,2,…,80, and ε starting from 0.005 and ending 

at 0.015 by a step size 0.00025. Next, we evaluate the asymptotic expansion (19) at the 

same values of ε and ti as the numerical solutions for N=0,1 and 2 respectively. Figs.1-3 

plot respectively the values of the errors at these 41 points, namely, 0logE , 1logE  and 

2logE  as functions of logε. The exact solution ),t(u exact ε  in Eq.(22) is replaced by 

the numerical solution. For N=0,1 and 2, the least-square fit of the data is used to 

determine the slopes 0.972435, 2.00396 and 3.01346 respectively, which are in 

excellent agreement with the exact slopes of N+1=1,2 and 3, respectively. In this paper, 

software MATHEMATICA is applied to implement relative calculations and plots.  
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Fig.1 Order verification of the asymptotic expansion (19) using one term 0asym uu =  
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Fig.2 Order verification of the asymptotic expansion (19) using two terms 10asym uuu ε+=  
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Fig.3 Order verification of the asymptotic expansion (19) using three terms 
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4. CONCLUTIONS 

The asymptotic expansions of the solutions of the nonlinear differential equation, 

obtained by the Lindstedt-Poincare method, are uniformly valid for small parameter ε 

and arbitrary t, which overcomes the defect in Ref.[4].  

REFERENCES 

1. A.H.Nayfeh, Introduction to perturbation techniques, New York, Wiley, 1981 

2. D.L.Bosley, A technique for the numerical verification of asymptotic expansions, 

SIAM Review, 38(1),128-135, 1996 

3. W.Robin, On the reversion method for the approximate solution of nonlinear 

ordinary differential equations, Journal of Mathematical Education in Science and 

Technology, 30(1),81-91, 1999 

4. S.A.Khuri, Numerical order verfication of the asymptotic expansion of a nonlinear 

differential equation arising in general relativity, Applied Mathematics and 

Computation, 134,147-151, 2003 

5. Elias Deeba and Shishen Xie, The asymptotic expansion and numerical verification 

of Van der Pol’s equation, Journal of Computational Analysis and Applications, 

3(2),165-171, 2001 

6. S.A.Khuri and S.Xie, On the numerical verification of the asymptotic expansion of 

Duffing’s equation, International Journal of computational Mathematics, 

72,325-330, 1999 

7. B.Mudavanhu and R.E.O’Malley, JR, A new renormalization method for the 

asymptotic solution of weekly nonlinear vector systems, SIAM Journal of Applied 

Mathematics, 63(2),373-397, 2002 


