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Abstract-Determination of The Steady State Response of EFEF / VFVF Supported 

Rectangular Specially Orthotropic Plates is presented. EFEF and VFVF plates, these are 

rectangular plates with two opposite edges elastically or viscoelastically supported and 

remaining others free. Using the energy based finite difference method; the problem is 

modeled by a kind of finite difference element. Due to the significance of the 

fundamental frequency of the plate, its variation was investigated with respect to 

mechanical properties of plate material and translational spring coefficient of supports. 

The steady state response of viscoelastically supported plates was also investigated 

numerically for various damping coefficients. In the numerical examples, the natural 

frequency parameters and steady state responses to a sinusoidally varying force are 

assessed for the fundamental mode. Convergence studies are made. Many new results 

have been presented. Considered problems are solved within the frame work of 

Kirchhoff-Love hypothesis. 
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1. INTRODUCTION 

 

It is generally accepted that classical support conditions employed in the analysis of 

rectangular plate behavior represent only limiting mathematical conditions. The actual 

boundary conditions of a real system are mostly not classical, for example in ship 

plating, machine tables, circuit boards, solar panels, bridge decks, aircraft and marine 

structures supports are generally accepted are elastic. In addition, rectangular plates, 

with two opposite edges supported and remaining others free, extensively use in many 

branches of modern industry, these panels and plates are fabricated from composite 

materials. Therefore, the present investigation may be considered to be a problem of the 

mechanics of elements fabricated from composite materials.  

There are lots of work has been undertaken for the analysis of a rectangular plate in the 

case of free and forced vibrations in literature. Extensive investigation has been carried 

out on the analysis of the free vibration of rectangular plates having classical boundary 

conditions, [1-6] and elastically restrained edges [7-31] has been widely analyzed. 

Viscoelastically supported plates studied by several researchers for point supported 

plate systems. Yamada and co-workers [32] studied free vibrations of elastically point-

supported plates and forced vibrations of viscoelastically point-supported isotropic 

plates. Kocatürk and Altıntaş [33, 34] extended Yamada’s [32] problem in case of 

anisotropic plates by using finite difference technique. 

 

In this paper, plate problems are studied particularly for the case of boundary conditions 

elastically and viscoelastically restrained against translation. 
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A review of the related literature reveals that this problem has not heretofore been 

properly addressed. Prompted by lack of research work in this area, this paper aims to 

provide some vibration solutions for plates systems. The accuracy of the results was 

partially shown by comparing results available from other sources wherever possible. 

 

2. ANALYSIS 
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Figure 1. Viscoelastically supported plate subjected to concentrated force. 

 

Consider a viscoelastically supported plate with side lengths a, b and thickness h 

subjected to a concentrated force as shown in Fig 1. Translational stiffness and damping 

coefficients were assigned equally along supported edges.  The elastic symmetry axis of 

the plate material coincide with the OX  and OY  axes. Therefore the plate is specially 

orthotropic. Given W is the lateral displacement of the mid-surface of the plate 

corresponding coordinate Z, maximum strain energy of the plate is 
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and maximum kinetic energy of the plate is 
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where XXD , YYD  and 66D  are expressed as follows: 
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( ) ( ) ( )3 3 3

6612 , 12 , 12XX X YY Y XYD E h D E h D G h′ ′= = =   (3) 

 

where XYG  is shear modulus. ,X YE E′ ′  are derived using: 

 

( ) ( )2 2, , 1 / , 1 /XY Y YX X Y X X X YX Y X YXE E e E E E E e E E e eν ν ν ν′ ′= = = − = −  (4) 

 

The additive strain energy and dissapation function of per viscoelastic support is 

 

' 2 ' 21 1
, ( )

2 2
s Si SiF k W D c W= = &       (5) 

 

where 'k  and 'c  is spring coefficient and damping coefficient of per viscoelastic 

support, XE , YE  are Young’s moduli in the OX  and OY  directions, respectively, and 

YXν  is the Poisson’s ratio for the strain response in the X  direction due to an applied 

stress in the Y  direction. The total energy of whole plate can be found by summing of 

entire area of plate with supports and external force. The potential energy from external 

force is 

 

e EXT EF F W= −          (6) 

 

where FEXT  and WE are external force and corresponding displacement.  

 

Introducing the following non-dimensional parameters 
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the above energy expressions can be written as  
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( )22 '

,

1

2
m nD a c w= &    

 ,e m nF aQ w= −  

 

The derivative terms was approximated in terms of discrete displacements at grid points 

by using the following finite difference operators: 
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The energy for the whole plate can be found by summing over the entire area of the 

plate. Thus 
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where N is taken as the number of the mesh points in each of the two directions in the 

plate region, N N×  is the total number of the area elements on the plate.  
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Figure 2 Typical finite difference mesh on part of a plate 
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The governing differential equation as obtained from the Lagrange’s equation is given 

as 
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where ,m nw  is the ,m n  th discrete displacement and the overdot stands for the partial 

derivative with respect to time. Introducing the following non-dimensional parameters, 
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and remembering that ( )1 2 1 2( , , ) , i tw x x t w x x e= ω , which was given in equation (7), by 

using equation (11) for the mesh point m, n with equation (8a-e) results in the following 

expression: 
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,

2( )
S m n Q

i q
w

x y x y

κ λγ
α α

+
+ =

∆ ∆ ∆ ∆
,                1i = −     (13) 

 

In equation (13) Sα  and Qα  is taken values 0, 1 depending of existence of support and 

load respectively on pivotal point m, n. 

 

For the whole mesh points, by using equation (13), the following set of linear algebraic 

equations is obtained which can be expressed in the following matrix form 

 

[ ]{ } [ ]{ } [ ]{ } { }2A w i B w C w q+ − =λγ λ      (14) 

 

where [ ]A , [ ]B  and [ ]C  are coefficient matrices obtained by using equation (13) for all 

mesh points. For free vibration analysis, when the external force and damping of the 

supports are zero in (14), this situation results in a set of linear homogeneous equations 

that can be expressed in the following matrix form: 

 

[ ]{ } [ ]{ } { }2 0A w C w− =λ        (15) 

 

Numbering of the mesh points is shown in Figure 2. By decreasing the dimensionless 

mesh widths, the accuracy can be increased. 

 

The total magnitude of the reaction forces of the supports is given by 

 

( )i j jP i w= κ + γ∑ ∑        (16) 

 

and therefore the force transmissibility at the supports is determined by 

 

( )/ /R i EXT j jT P F i w q= = κ + γ λ∑ ∑ ∑      (17) 

 

where EXTF∑  is total amount of external force. 

The number of unknown displacements is ( )22N + , where 2N  is the mesh size in the 

plate region.  

 

3. NUMERICAL RESULTS 

 

Because of the lackness of the comparable results for different E2/E1 ratios, only 

fundamental frequency of simple supported isotropic plate was compared in table 1. 

Gorman also studied elastically supported plate but results are given in reference [11] 

graphically and the results are in good agreement not shown here. 
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Table 1. Fundamental frequency parameter, λ, for a square plate for different  

boundary conditions.  

(ν = 0.333, κ = 1e10) 

 

BC 
(Boundary 

Conditions) 

Actual value [5] 

 
Present 

method 
Mesh Size 

(151x151) 

SSSS 19,74  19,737 

SFSS 11,58 11,582 

SFSF 9,568 9,568 

SFFF 14,77 14,767 

FFFF 19,22 19,220 

SFFS 3,292 3,292 

 

The steady state response to a concentrated force acting on an orthotropic square plate, 

which of two edges are viscoelastically supported oppositely others are free, is 

calculated numerically. 

 

Viscoelastic supports are given equally per supported area. A brief investigation of the 

free vibration of an elastically supported plate is necessary for a better understanding of 

the responses presented in this study. The natural frequencies of the elastically 

supported plate are determined by calculating the eigenvalues, assuming that the 

damping parameter of the supports and external force are zero. 

  

In Table 1. the convergence of the fundamental mode is presented for the for κ=50, 

κ=1e20 (almost rigid for translational deflection) and υ=0.3, υ =0.333 respectively.  

 

It is shown that the convergence with respect to mesh size is quite rapid in the 

considered cases. As it is observed from Table 2, the frequency parameter 

monotonically convergences while the mesh size increase. Convergence can be below 

or above depending of the value of translational spring coefficient. Convergency 

properties are not effected from E2/E1 ratios and not shown here.  

 

Table 2. The effect of mesh size on the fundamental frequency.  

( )2 1/ 1E E =  

Mesh Size υυυυ=0,3-κκκκ=50 υυυυ=0,3-κκκκ=1e20 υυυυ=0,333-κκκκ=1e20 υυυυ=0,333-κκκκ=50 
9X9 5,8180 9,4898 5,8039 9,4242 

11X11 5,8195 9,5398 5,8039 9,4758 

15 X 15 5,8180 9,5852 5,8008 9,5211 

17 X 17 5,8180 9,5961 5,8008 9,5320 

21 X 21 5,8154 9,6085 5,7974 9,5447 

51 X 51 5,8076 9,6277 5,7883 9,5645 

81 X 81 5,8050 9,6299 5,7853 9,5668 

101 X 101 5,8041 9,6304 5,7844 9,5673 

131 X 131 5,8033 9,6308 5,7834 9,5677 

151 X 151 5,8029 9,6309 5,7829 9,5678 
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The effect of mesh size and translational spring coefficient on the fundamental 

frequency can be seen clearly in Figure 3.  
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Figure 3. The effect of mesh size on the fundamental frequency. 

( )2 1/ 1E E =  

 

Figure 4 shows the frequency parameters λ versus the stiffness parameter κ. The 

translational stiffness coefficient is given equal values along supported edges in the 

case 0, 0EXTFγ = = .   In Figure 4, the values of ordinates at 0κ =  and κ = ∞  represent 

the frequency parameters of a free plate and a simply supported plate, respectively. As 

the value of the translational stiffness parameter increases, the frequency parameter also 

increases and ultimately becomes the value of a SFSF supported plate. All eigen values 

approach zero as their lover limit, as expected.  

 

(1.00E-4) (1.00E-2) (1.00E+0) (1.00E+2) (1.00E+4) (1.00E+6) (1.00E+8) (1.00E+10)

0

2

4

6

8

10

12

 κ

λ

E  /E =1

E  /E =0.8

E  /E =0.6

2       1

2       1

2       1

 
 

Figure 4. The effect of and spring stiffness on the non dimensional fundamental 

frequency.  

(ν = 0.3, Mesh size (151X151)) 

 

Table 3. depicts eigenvalues of frequency parameter numerically for anisotropic plate. 

Last three line of Table 3. corresponds to the case of SFSF supported plate, while others 

EFEF relatively. It can be seen that effect of E2/E1 ratio on fundamental frequency of 

plate is getting significant, while the value of κ increases.   
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Table 3. Fundamental frequency parameters of elastically supported plate  

(ν = 0.3, Mesh size (151X151)) 

 

κ E2/E1=1 E2/E1=0,8 E2/E1=0,6 
50 5,803 5,782  

100 7,064 7,028 6,966 

500 8,897 8,839 8,742 

1000 9,233 9,173 9,074 

1e4 9,581 9,523 9,425 

1e6 9,630 9,574 9,479 

1e8 9,631 9,575 9,480 

1e10 9,631 9,575 9,480 

1e20 9,631 9,575 9,480 

 

Table 4 depicts frequency parameters and transmissibility values where the peak values 

occur for set of κ, γ, E2/E1. When comparing Table 3 with Table 4, one can see clearly, 

frequency parameter tend to be close natural fundamental frequency of the plate for 

lower values of γ.  

 

Table 4. The frequencies at which the peak values of the force transmissibilities occur, 

(ν = 0.3, Mesh Size (151X151)) 

E2/E1=1 E2/E1=0.8 E2/E1=0.6 

κκκκ γγγγ  λλλλ TR κκκκ γγγγ  λλλλ TR κκκκ γγγγ  λλλλ TR 

5 1 2,068 3,515 5 1 2,189 2,800 5 1 2,114 2,691 

10 1 2,986 4,258 10 1 2,969 4,202 10 1 2,979 3,929 

50 1 5,810 14,794 50 1 5,785 15,101 50 1 5,750 14,745 

100 1 7,078 35,435 100 1 7,047 36,338 100 1 6,973 34,565 

500 1 8,895 625,255 500 1 8,875 872,252 500 1 8,744 510,529 

1e10 1 9,635 6038,343 1e10 1 9,500 983,483 1e10 1 9,438 289,486 

1 5 0,609 1,052 1 5 0,678 1,061 1 5 0,647 1,036 

5 5 1,938 1,178 5 5 1,945 1,177 5 5 1,918 1,174 

10 5 2,902 1,358 10 5 2,914 1,358 10 5 2,892 1,358 

50 5 5,934 3,393 50 5 5,914 3,396 50 5 5,869 3,399 

100 5 7,152 7,370 100 5 7,125 7,371 100 5 7,047 7,366 

500 5 8,900 95,097 500 5 8,875 126,926 500 5 8,750 92,930 

1e10 5 9,635 6038,343 1e10 5 9,500 983,483 1e10 5 9,438 289,486 

1 10 8,752 1,500 1 10 8,521 1,472 1 10 8,119 1,424 

5 10 8,502 1,518 5 10 8,273 1,493 5 10 7,896 1,451 

10 10 8,172 1,554 10 10 7,954 1,533 10 10 7,596 1,497 

50 10 6,876 2,437 50 10 6,828 2,430 50 10 6,704 2,416 

100 10 7,464 4,458 100 10 7,375 4,450 100 10 7,329 4,425 

500 10 8,915 48,398 500 10 8,867 51,486 500 10 8,761 47,333 

1e10 10 9,629 14156,873 1e10 10 9,594 13175,940 1e10 10 9,488 65452,418 

1 50 9.,541 7,004 1 50 9,484 6,872 1 50 9,372 6,652 

5 50 9,535 7,011 5 50 9,484 6,876 5 50 9,365 6,657 

10 50 9,526 7,020 10 50 9,484 6,885 10 50 9,356 6,665 

50 50 9,460 7,146 50 50 9,406 7,010 50 50 9,288 6,783 

100 50  9,380 7,444 100 50 9,344 7,304 100 50 9,206 7,073 

500 50 9,175 15,798 500 50 9,121 15,618 500 50 9,012 15,277 
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1e10 50 9,630 22358,833 1e10 50 9,500 1449,644 1e10 50 9,468 9883,807 

Figure 5 shows that existence of a suitable value of damping parameter γ, for possible to 

reduce the peak values of the force transmissibilities to certain minimum value for any κ 

value. Existence of such points is useful for an optimum design of a system by choosing 

appropriate damping parameter. Within certain range of the frequencies the force 

transmissibilities are less than unity, which indicates the possibility of vibration 

isolation. 
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Figure 5. The Effect of damping coefficient on force transmissibilities for different  

κ values. (ν = 0.3, Mesh Size (151X151)) 

  

The effect of anisotropy on force transmissibilities are shown in Figure 6. It is 

apparently seen that the value of force transmissibility is not affected from anisotropy 

significantly. But the values of frequencies where the peak values occur are affected 

from anisotropy as suitable for natural frequency occurrence range for different E2/E1 

ratios.  
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Figure 6. The effect of anisotropy on force transmissibilities for different κ and γ values. 

(ν = 0.3, Mesh Size (151X151)) 

 

4. CONCLUSIONS 

This present paper, to the authors’ knowledge, the first known vibration analysis of 

EFEF / VFVF supported anisotropic plate. Model can be used to simulate the actual 

boundary conditions of the plates. A simple numerical method has been  presented for 

determining natural frequencies of plates. The convergence studies are made. 

Fundamental frequency was determined depending on spring coefficient and anisotropy. 

The frequencies at which the peak values of the force transmissibilities occur were 

obtained. It was shown that existence of a suitable value of damping parameter γ for 

possible to reduce the peak values of the force transmisibilities to minimum certain 

value for any κ. The effect of anisotropy on the force transmissibilities was also 

investigated. 

 

It is hoped that these novel results will be useful to designers in the various types of 

practical applications. 
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