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Abstract- A nonlinear fin equation in which thermal conductivity is an arbitrary 

function of temperature and, heat transfer coefficient is an arbitrary function of spatial 

variable is considered. Scaling transformation is applied to the equations to determine 

the specific forms of these functions for which the equation admits such type of 

transformation. It is found that for arbitrary heat conduction function, scaling 

transformation exists for an inverse square heat transfer coefficient. Selecting also the 

conductivity as an exponential function, the partial differential equation is transferred to 

an ordinary differential equation via similarity transformations. The resulting equation 

is solved numerically and temperature distribution is determined for various heat 

conductivity parameters.  

 

1. INTRODUCTION 

Heat transfer through extended surfaces has been studied extensively in the 

literature. Constant thermo-physical properties and uniform heat transfer coefficient is 

often assumed in the determination of the temperature distribution along an extended 

surface. The mathematical complexity of the conservation energy equation is reduced 

by this assumption and therefore well-established closed form analytical solution can be 

obtained for a number of cases. However, this assumption will lead to poor prediction 

of the thermal performance of the extended surface especially for certain fin geometries.  

Nnanna et al. [1] developed a generalized  analytical solution for the 

computation of heat loss from an extended surface based on variable heat transfer 

coefficient, fin geometry and fin surface curvature. Lee et al. [2] applied a hybrid 

numerical method of the Laplace transformation and the finite difference method to 

solve the transient thermo-elastic problem of an annular fin assuming the heat transfer 

coefficient is a function of the radius of the fin. Yang and He [3] solved the problem of 

one dimensional, transient heat transfer in a fin by the method of small parameter 

perturbation and by reducing the partial differential equation to a system of ordinary 

differential equations. They used shooting and superposition method to solve the system 

of ordinary differential equations. Chu and Chang [4] used a hybrid numerical technique 

to investigate a two-dimensional cylindrical pin fin with arbitrary variable Biot numbers 

on the fin lateral and tip surfaces. Yu and Chen [5] discussed the optimization of 

rectangular profile circular fins with variable thermal conductivity and convective heat 

transfer coefficients. They used differential transformation method to solve the 

nonlinear heat transfer equation. Natarajan and Shenoy [6] used the principles of 

variational calculus to determine the shapes of convective pin fins that maximize heat 
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dissipation for fixed amount of fin material. They considered the convective heat 

transfer coefficient to vary with the fin diameter according to a power law. Zubair et al. 

[7] obtained the optimal dimensions of circular fins with variable profile and 

temperature-dependent thermal conductivity. Chiu and Chen [8] used the Adomian 

decomposition method to evaluate the efficiency and the optimal length of a convective 

rectangular fin with variable thermal conductivity and to determine the temperature 

distribution within the fin in the form of infinite power series.  

Very limited amount of work can be found on the similarity solution to heat 

transfer problems through extended surfaces especially with variable thermal properties.  

Campo and Salazar [9] studied the analogy between unsteady-state conduction in a 

planar slab for short times and steady-state conduction in a straight fin of uniform cross 

section. They also presented approximate analytical solutions of the transient heat 

conduction equation for short times in a plane having a uniform initial temperature and 

subjected to a uniform surface temperature. Kuehn et al. [10] studied the similarity 

solution or conjugate natural convection heat transfer from a long vertical plate fin. 

They presented complete result for a uniform conductivity plate fin as a function of the 

fluid Prandtl number. In the present study, a similarity solution is attempted to the 

nonlinear fin equation in which the thermal conductivity is an arbitrary function of 

temperature and heat transfer coefficient is an arbitrary function of spatial variable. The 

types of functions for the thermal conductivity and the heat transfer coefficient for 

which similarity solutions could be obtained were investigated. 

 

2. THEORETICAL ANALYSIS FOR SCALING TRANSFORMATION 

 Following a similar approach as presented in reference [11], the dimensionless, 

nonlinear fin equation can be written as,  
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where θ is the dimensionless temperature, x and t are the dimensionless spatial and time 

variables respectively. Thermal conductivity is an arbitrary function of temperature and 

heat transfer coefficient is an arbitrary function of the spatial variable. N is the fin 

parameter. In [11] a linear thermal conductivity is assumed. Our aim in this study is to 

apply scaling transformation to the equation and determine the specific forms of k(θ) 
and f(x) for which the fin equation admits this transformation. For applications of 

scaling symmetries as well as other types of special Lie Group transformations, and 

determining specific forms of functions for which these symmetries exist, see [12-16] 

for example. In the degenerate case of equation (1) with f(x)=0, a complete group 

classification has been presented previously [17]. The complete group classification of 

the more general case of f(x)≠0 has been treated only recently [18].  
The fin equation should be invariant under the below scaling transformations 

θλ=θλ=λ= cba ,tt,xx            (2) 

which leads to the following invariance conditions 

)(k)(k cba2 θ=θλλ −−              (3) 

)x(f)x(f ab =λλ −−              (4) 
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To determine the specific forms of these functions, equations are differentiated with 

respect to λ and expressed in terms of original variables 

0)(kc)(k)ba2( =θ′θ−θ−             (5) 

0)x(fxa)x(fb =′+              (6) 

Equation (5) leads to three distinct cases: 

i. k=k(θθθθ) 
For this case, the thermal conductivity is an arbitrary function of temperature 

which requires the coefficients of equation (5) to vanish and hence b=2a and c=0. If the 

heat transfer coefficient is required to be an arbitrary function of x, from equation (6) 

a=b=0 which means that the fin equation does not accept scaling transformation when 

both functions are arbitrary. Selecting f(x)=1 does not improve the situation. However, 

solving (6) for f(x) with b=2a yields f(x)=1/x
2
. For this special choice, the parameters 

are 

b=2a,           c=0  for    k=k(θ)   and    f=1/x2              (7) 

Note that the constant appearing in the solution of f(x) can be embedded into the fin 

parameter N.  

ii. k=k0 

For this case, the thermal conductivity is constant. From equation (5), c is 

arbitrary and b=2a. Requiring f(x) to be arbitrary yields a=b=0 with no scaling 

transformations in the independent variables. For a specific form of f(x)=1/x
2
 however, 

the scaling symmetries increase 

b=2a,     c arbitrary     for   k=k0 and  f=1/x
2
                (8) 

iii. k=k0θθθθ
ββββ 

 This case is obtained by integrating equation (5) directly. Here β=(2a-b)/c. f(x) 
cannot be arbitrary since a=b=0 from equation (6) which leads to β=0, the previous 
case. For f=1, the symmetries are 

b=0,        c=2a/β   for  k=k0θ
β
    and    f=1                (9) 

The symmetries increase if equation (6) is integrated. The result is f(x)=x
m
 where m=-

b/a. The symmetries are 

b=-ma,       c=(2+m)a/β     for  k=k0θ
β
   and     f= x

m
       (10) 

 

3. SIMILARITY TRANSFORMATION AND NUMERICAL RESULTS 

 Numerical results will be produced for the following heat conductivity and heat 

transfer coefficients  

20
x

1
h,ekk == αθ                (11) 

For this choice, one may use equation (7) for writing the determining equations for 

similarity variables 
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Solving the system, one has the below similarity variable and function 
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Substituting these variables into the original equation with the specific choice of f and k 

functions, one finally converts the partial differential equation into an ordinary 

differential equation 
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The boundary conditions for the problem are 

1)(,0)0( =∞θ=θ               (15) 

Runge-Kutta algorithm Ode45 of MATLAB is used in numerical integrations. To 

satisfy the boundary condition at infinity, shooting technique is used. By trial and error, 

an appropriate )0(θ′ value is determined for which the condition at infinity is satisfied. 

To handle the singularity at µ=0, the integration is started in a positive neighborhood of 
zero. If ε<<1 represents a very small positive value, the first condition can be 

transferred to the neighborhood value by Taylor series expansion 

)0()0()( θ′ε+θ=εθ               (16) 

We selected numerical solutions which are independent of the selection of parameter ε. 
This can occur only for small fin parameters N.  

 Figure 1 shows temperature profiles versus the similarity variable for different 

conductivity parameters α. 
For the same choice of parameters, the numerical integration is repeated for 

various ε values. As can be seen from Figure 2, the temperature at infinity is almost 

independent of the choice of ε.  

  

Figure 1-Temperature vs. similarity variable for various heat conductivity parameters 

(k0=1, N=0.02, ε=0.001) 
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Figure 2- Temperature at infinity vs. logarithm of ε (k0=1, N=0.02, α=1) 

 

4. CONCLUDING REMARKS 

 A similarity analysis is presented for the fin equation with variable heat 

conduction and heat transfer coefficients. The specific forms of these functions are 

determined for equation to admit scaling symmetry. For the case of exponential 

temperature variation of heat conduction and inverse square spatial variation of heat 

transfer coefficients, fin equation is reduced to an ordinary differential equation via a 

similarity transformation. Resulting ordinary differential equation is integrated using a 

Runge-Kutta algorithm combined with shooting.  
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