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Abstract- In this study, the in plane vibrations of cracked circular curved beams is 
investigated. The beam is an Euler-Bernoulli beam. Only bending and extension effects 
are included. The curvature is in a single plane. In plane vibrations is analyzed using 
FEM. In the analysis, elongation, bending and rotary inertia effects are included. Four 
degrees of freedom for in-plane vibrations is assumed. Natural frequencies of the beam 
with a crack in different locations and depths are calculated using FEM. Comparisons 
are made for different angles. 
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1. INTRODUCTION 

 
Vibrations of curved beams were investigated by many scientists. Curved beams are 
used in gears, electric machinery, pumps and turbines, ships, bridges etc. The governing 
equations of motion and solutions were given in the book of Love [1]. Yamada and 
Takahashi [2] analyzed steady state response of a Timoshenko beam for structural 
damping case. Ibrahimbegović [3] considered an arbitrary shape beam and included 
forcing effect. Khdeir and Reddy [4] presented a general model for dynamic response of 
a curved beam under arbitrary boundary condition and loading. Khan and Pise [5] 
studied buried curved piles. Kang and Bert [6] applied DQM and included bending 
moment, radial loading and warping. Bozhevolnaya and Kildegaard [7] performed 
experiments for uniform loading case. Walsh and White [8] investigated wave 
propagation of a constant curvature beam by combining flexure and extension effects. 
Kashimoto et al. [9] studied dynamic stress concentration using transfer matrix method. 
Tong et al. [10] investigated free and forced vibrations of circular curved beam for 
inextensional case. Krishnan et al. [11] studied free vibrations for different boundary 
conditions and subtended angles. Extensional effects were included by considering 
tangential and normal loadings [12]. Natural frequencies were calculated for classical 
boundary conditions including shear stress and rotary inertia [13]. Exact solutions of 
free in plane vibrations including extension, shear and rotary inertia were obtained by 
Tüfekçi and Arpacı [14]. Inextensional vibrations were investigated by using another 
version of DQM [15]. FEM was applied by combining polynomial displacement field 
[16]. Frequencies and mode shapes were obtained for different curves, cross sections 
and boundary conditions [17]. 
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Crack problems in straight beams were investigated widely. Continuous crack theory 
was developed [18], finite elements and component mode synthesis methods were 
combined [19], simple methods for frequencies were proposed [20], dynamic 
characteristics were studied analytically for a closing crack [21], frequencies of multiple 
cracked beam were calculated by modeling the cracks as a rotary springs [22], dynamic 
behaviors were presented using strain energies given by linear fracture mechanics 
theory [23], and FEM was used to calculate natural frequencies[24]. 
 
There are very few studies on the cracked curved beams. Krawczuk and Ostachowicz 
[25] calculated natural frequencies of a clamped-clamped arch with an open transverse 
crack. Cerria and Rutab [26] detected localized damage by frequency data. They 
modeled the crack by a rotary spring attached to both ends and assumed flexural rigidity 
as a decreasing function. Müller et al. [27] obtained stress intensity factors and strain 
release rate, and applied to the circular curved beams. Nobile [28] studied crack 
propagation in curved beams using S-theory for mixed mode crack problem and 
obtained approximate stress intensity factor and compared with that of reference [27]. 
 
In this study, the in plane vibrations of a circular curved beam with a Mode 1 open 
transverse crack is investigated. Extension of neutral axis, bending, and rotary inertia 
effects are included. FEM is used to calculate natural frequencies for different crack 
depths and locations and for different boundary conditions. 
 
 

2. FINITE ELEMENT METHOD 

 
In this section, finite element method [29] will be used to obtain natural frequencies of a 
circular curved beam with a transverse crack as shown in Figure 1. s is arc length, R is 
curvature, γ  arc angle, E is modulus of elasticity I is mass moment of inertia, ρ is 
density and A (b*h) is the cross sectional area. u and v are tangential and transverse 
displacements, respectively. The crack location and the depth are c and a, respectively. 
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Figure 1. A circular curved beam with a transverse crack with depth a at location c and 
cross section height h 

 
 
Cubic interpolation functions are used for tangential and transverse displacements [30]. 
Kinetic and elastic energies can be written as follows 
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here ( ) &  denotes differentiation with respect to time (t). In plane strain, net cross 
sectional rotation and curvature change in equation (1) are given as follows 
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For rectangular cross sectional beams (b*h), equivalent flexural rigidity for Mode 1 
crack case is given as follows [31, 32]. 

 

γ 

y,v 
x,u 

R 

a 

c 

h 

s 



 
 

H. R. Öz and M. T. Daş 

 

4 

( )
( )

2

1

),(
1








 −
+

+
=

aak

cs

caEIR

EI
EI c         (3) 

 
where 
 

( ) ( )

( )
( ) ( ) 
















+






 −
=

aak

c

aak

cs
aak

aD
caR

arctanarctan

2
, , ( ) ( )( ) ( )

( )( )hahh

aahaF
ak

33

323

−−

−
=

π
  

( ) ( )( )
4

2218

Ebh

aaF
aD

π
= , ( )

43

148.1333.74.112.1 






+






−






+






−=
h

a

h

a

h

a

h

a
aF  (4) 

 
These equations are valid for straight beams and obtained using energy method. But we 
now assume that the equations above represent flexural rigidity variation with tangential 
coordinate for small arc angles. 
 
 

3. NUMERICAL SOLUTIONS 

 
In this section, natural frequency variation with respect to crack location and depth will 
be presented. Clamped-clamped, simple-simple and clamped-free boundary conditions 
are considered. Crack is assumed at different locations and depths. 
 
Firstly, let’s consider flexural rigidity ratio of the cracked and uncracked beam, EIc/EI. 
In Figure 2, the variation is given for a beam of area (h*b) 0.02*0.01 m2, length 1 m and 
E=2*1011 Pa. Crack depths are selected h/10, 3h/10 and 5h/10 respectively. The location 
of the crack is c=0.5s. The ratio decreases toward the crack and it becomes minimum at 
the crack. The larger the depth, the smaller the ratio. The ratio approaches to unity away 
from the crack which is uncracked case.  
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Figure 2. The variation of flexural rigidity ratio with the crack location and depth. Crack 

depths are h/10, 3h/10, 5h/10 and location is c=0.5s. 
 
Analytical solutions were presented in reference [26] for a crack modeled by a rotary 
spring. Also it was explained that the model can be used for a curved beam. In this 
study, we assume that the flexural rigidity varies according to equations (3) and (4). 
Also we consider arc angle changes from 0o to 20o while keeping the length constant (1 
m). 
 
In Figures 3 and 4, the natural frequency variation of a clamped-free curved beam is 
presented for the first four modes. Arc angle is 20o, crack depth is a=h/10 a=2h/10 and 
a=3h/10, respectively, b=0.02, h=0.01, s=1m. Cracked cases are denoted by solid lines 
and uncracked cases are denoted by dashed lines. For the ucracked case, the natural 
frequencies are 51.522036 rad/s, 317.61959 rad/s, 896.54848 rad/s, and 1760.7971 rad/s 
respectively for the first four modes for clamped-free boundary condition. The 
frequencies are decreasing very much when the crack is around the clamped end. 
Because the moment is maximum at the clamped end and the stress concentration is 
high. If the moment is maximum at some other locations, the frequencies again will be 
very much lower than that of the uncracked one, e.g. 0.5 m< c <0.6 m in the second 
mode (Figure 3, right), c ≅ 0.3 and 0.7 m in the third mode (Figure 4, left), and c ≅ 0.2, 
0.5, and 0.8 m in the fourth mode (Figure 4, right). As the crack is located at the other 
places the moment decreases and at the free end it becomes zero. That means that the 
natural frequencies of the cracked beam approache to that of uncracked beam as the 
crack is moved to the free end. Also when the crack is located around the nodes of 
uncracked beam, the effect of the crack is decreasing and the frequencies of cracked and 
uncracked beams are close to each other at these locations. The deeper the crack the 
smaller the frequencies. 
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Figure 3. The 1st and 2nd mode natural frequency variations of a clamped-free curved 

beam, cracked and uncracked cases, angle=20o, b=0.02, h=0.01, s=1m 
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Figure 4. The 3rd and 4th mode natural frequency variations of a clamped-free curved 

beam, cracked and uncracked cases, angle=20o, b=0.02, h=0.01, s=1m 
 
In Figures 5 and 6, frequency variation is given for simple-simple end conditions. The 
uncracked frequencies are 572.55663 rad/s, 1164.80173 rad/s, 1766.80529 rad/s, and 
2302.33641 rad/s for the first four modes respectively. 
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Figure 5. The 1st and 2nd mode natural frequency variations of a simple-simple curved 

beam, cracked and uncracked cases, angle=20o, b=0.02, h=0.01, s=1m 
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Figure 6. The 3rd and 4th mode natural frequency variations of a simple-simple curved 

beam, cracked and uncracked cases, angle=20o, b=0.02, h=0.01, s=1m 
 

Similar conclusions can be drawn for this end condition. Since the ends are free to 
rotate, the moments are zero and the effect of the crack near the ends is less. The 
smaller the depth of the crack, the closer the frequencies to the uncracked one. 
 
In Figures 7 and 8, frequency variation is given for clamped-clamped end conditions. 
The uncracked frequencies are 896.69882 rad/s, 1320.66377 rad/s, 2002.56499 rad/s, 
2913.96424 rad/s for the first four modes, respectively. Again similar conclusions can 
be drawn for this end condition. Also, since the ends are clamped, the moments are 
maximum and the decrease in natural frequencies is obvious. The smaller the depth of 
the crack, the closer the frequencies to the uncracked one. 
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Figure 7. The 1st and 2nd mode natural frequency variations of a clamped-clamped 
curved beam, cracked and uncracked cases, angle=20o, b=0.02, h=0.01, s=1m 
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Figure 8. The 3rd and 4th mode natural frequency variations of a clamped-clamped 
curved beam, cracked and uncracked cases, angle=20o, b=0.02, h=0.01, s=1m 

 
In Figure 9, natural frequency variation is plotted for different arc angles for clamped-
free end conditions. Crack location is c=0.5s, depth a=3h/10, b=0.02, h=0.01, s=1m. 
The frequencies of the cracked beam are always lower than that of the uncracked beam. 
Because the crack decreases the flexural rigidity of the beam. 
 

 
 
Figure 9. The natural frequency variation of clamped-free beam c=0.5s, a=3h/10, 

b=0.02, h=0.01, s=1m 
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4. CONCLUSIONS 

 
In this study, the in plane vibrations of circular curved beams with a mode 1 transverse 
crack is investigated. Euler-Bernoulli type beam is considered. Bending, extension and 
rotation effects are included, shear effect is excluded. FEM is used to calculate natural 
frequencies for different crack locations and depths. Comparisons are made for different 
arc angle and for different end conditions. Increasing the crack depth decreases the 
frequencies. 
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