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Abstract- Exact solutions for the unsteady flow equations of an incompressible MHD
aligned second grade fluid are obtained. Translational symmetries are used successively
to reduce the governing partial differential equations into ordinary differential
equations.
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1. INTRODUCTION

The differential equations governing the flow of non-Newtonian second grade
fluids are highly nonlinear in nature. The nonlinearities occur in inertial as well as in
viscosity parts [1, 2]. For a homogeneous incompressible second grade fluid, the
governing equations are one order higher than the Navier-Stokes equations, that's why
an additional boundary condition is required. However, there are many flow situations
for which there are no such restrictions. For details reader is referred to study [3-7].

Inverse methods [8-14] play an important role to solve the general flow
equations exactly, but unfortunately these solutions are not the general solution of the
original equations because these are obtained by assuming a special form of the stream
function. The form of the stream function is assumed due to the flow geometry of the
flow field.

Due to the non-availability of the techniques which could be applied to the
nonlinear equations directly, we seek some transformations which lead to the
simplification of the nonlinear equations. These transformations leave the equations
invariant. Sophus Lie gave a systematic approach to find the symmetries of differential
equations which was further improved by several authors. For details the reader is
referred to see the references [15-19]. Symmetries can reduce the order as well as the
number of independent variables appearing in the differential equations [20-22].

In the present analysis we have considered the unsteady two directional, two
dimensional flow equations for an incompressible MHD aligned second grade fluid. The
same equations were solved by inverse method exactly by Chandna [11]; the solutions
obtained by Chandna are however exact but not general whereas the solutions obtained
by us are the general solutions. Translational symmetries are used twice to reduce the
partial differential equations into ordinary differential equations.
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2. FLOW EQUATIONS

The basic equations for an incompressible MHD aligned second grade fluid are

V-V =0, (continuity) (1)
PV, +(V-V)V]=V-T+ pb+ 1 (Vx H)x H, (linear momentum) 2)
H, =V x(Vx H)—%v x(VxH), (diffusion) (3)
uo
V-H=0, (solenoidal) 4)
The constitutive equation for the stress of a second grade fluid [7] is
T=—pl+uA, + A, +a,A., (5)

with
A =L+L, L=VV,

AZ:(§+V-VJA1+LV+LTA1,

where V is the velocity vector, b is the body force per unit mass, H is the magnetic field
intensity, p is the pressure, p is the fluid density, v is the magnetic permeability, o is
the electrical conductivity, x is the constant viscosity, &, and «, are the constant
normal stress moduli, A, and A, are the first and second Rivlin-Ericksen tensors
respectively. The solenoidal equation (4) shows that there is no magnetic pole in the
flow field.
On specializing velocity, magnetic field intensity and pressure distribution are as

follows;

V = [u(x,y,0)v(x,3,0)0) H=[H,(x,y,0).H,(x,y,t)0] and p=p(x.y.)  (6)
We get the following equations from Egs. (1) - (4) after neglecting the body forces

u +v, =0, (7
| Uy, +U,, +uu, + 13u u_ + Vi,
u +u +vi,+—p = V(uxx + uyy)+ al+4vy +2vu, +3v u +uu,,
(8)
3w, v, Fu, |
+ ﬂ[Suxuxx +2vv, +2uu, +2v u+ ZVXqu]— V'H, (HZX - Hly),
1 vxxt - uxyt + uvxxx - uxvxx - uuxxy
v, tuv, —vu, +—p, = v(vxx - uxy)+ a|+13uu, —vu, —3u.v +3vu,
P ©)
|~V —2u u, +du |
+ ,6’[8uxuxy -2vau, +2uu, +2vu, - 2uxxuy]+ v H, (H2x —-H,, ),
1
Hth_Hlyt = * [HZ)cxx—’_Hnyy_Hlxxy_Hlyyy:|+VHlxx+vxle+VH1yy
o (10)
+v, H —uH, —-u H,-uH, —u H,
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H, +H, =0, (11)
where v=uwul/p, vi=y'lp, a=a/p and f=a,/p.

3. SOLUTION OF THE PROBLEM

Equations (7)—(11) are a system of nonlinear partial differential equations with
five dependent and three independent variables. It is not easy to get the exact solution of
this system in this form. Rivlin and Ericksen [1] used the inverse method to get the
solutions of the same problems by assuming a special form of the stream function, these
solutions are however exact but not general. We use the one-parameter Lie point
symmetries to reduce the system of partial differential equations into a system of
ordinary differential equations. For this purpose we use the translational symmetries
twice. The system (7) - (11) admits the translational symmetries in x-, y- and t-
directions. First we use the combination of 0/0x and 0/0y which lead the following

transformations for the dependent and independent variables
S=y—ax,u= f*(é:at)a V= g*(f,l‘), p= h*(éat)a H = Ll*(éat)ande = Lz*(éat)a (12)

where a is an arbitrary constant.
Therefore the system (7)-(11) reduces to the following system of partial

differential equations

g:e—af: =0, (13)
\ \ AR B . flea—af” e
i@ - fe——héE=v(l+a’) f ¢:+a(1+a2)|: . :I
p +g [ e (14)
—2aQ2a+ B)1+a’y fef e +v'L, (al,. + L"),
* 2 ¥ px
o valg —af ) e mvale ) e vaeat)| T BT
Y +tag [ e (15)
+2Q2a+ Y1 +a*)V [ f e =V L(aLl e + L),
* 1+ 2 * % % * % % *
L1¢t=( *a )L1¢§§+(g —af )L +(al — L) [ e, (16)
L'y —al: =0, (17)

The system (13) — (17) admits the symmetries 0/0& and 0/0t. We use the
combination of these two symmetries to reduce the above system of partial differential
equations into a system of ordinary differential equations. Therefore, 0/0& +bo/ ot
leads to the following change of variables

n=¢&=bt, 7 =1, g =g, K =h(p), Li=Ln),L:=1L{) (18)
where b is an arbitrary constant.

Using the transformations given in Eq. (18), the system (13) — (17) reduces to
g'-bf'=0, (19)
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—bf'H(g —af) f'= S h=v(l+a) [ +a(l+ )~ bf "—aff "+ ]
—2a(2a+ p)1+ aio)2 v (+ad*)L' L,

bg'ra(g —af ) [ = va(l+ @) el + az)[— abf"'~ ¢’ ﬂ”'+agf'”]
+2Q2a+ p)1+ az)zfﬂ v A+d)LL,

" 1+a2 m " "
—-bL"= o L'"'—(g—af)L'+(al, - L)) f",

L,’-aL,'=0,

(20)

21

(22)

(23)

Hence the system (7) — (11) of partial differential equations is reduced to the system

(19) — (23) of ordinary differential equations. From Egs. (19) — (23) we have
g=af +c¢,
L,=al, +c,,

(24)
(25)

Multiplying Eq. (21) by a and then adding it to Eq. (20) and using Eq. (24) and (25) we

get
a(l+a*)(c,—b) """ +v(+a*) f"—(c,—b) f'=0,
Here two cases arise for Eq. (26)
Le=0>b
e #b

3.1 Casel (c, =b)
In this case Eq. (26) takes the form
/=0,
which on integration gives
f=an+te,
Using Eq. (27) in Eq. (24) we find
g=a(en+e)+ca,
Substituting Egs. (24), (25) and (27) into Eq. (22) we have
L"=0,
which on integration gives
L =ca’ +cn+c,.

Using Eq. (29) in Eq. (25) we get
L, =a(cp’ +cgp+c,)+c,.
Eq. (21) with Eq. (24) becomes
=1+ a>)auf " +2Q2a, + @)1 +d*) f' £~V LL'|+ pbe,,
which on integration gives

h=(1+ az)[ﬂacsn +2(ay + o)1+ 612)032772 - g(csnz T Cell + C7):| + pben + ¢,

where C;’s i=1...8 are the constants of integration.

(26)

27

(28)

(29)

(30)

(1)
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Making use of back substitution consecutively with Egs. (18) and (12), Egs. (27) — (31)
can be written in the form of original variables

u(x,y,t) =c;(y—ax—ct)+c,, (32)

v(x,y,t) =ac,(y—ax—ct)+ac, +c, (33)
L(x,y,t)=ci(y—ax—ct) +c,(y—ax—ct)+c,, (34)
L,(x, y,t) = acy(y —ax —ct)’ + ac,(y —ax —ct) + ac, +c,, (35)

pacy(y —ax —ct) + pbe,(y —ax — )
px,y,0)=(1+a%) _§(cs(y_ax_clt)+c6(y_ax_clt))2 : (36)

+2Q2a +a,)(1+ az)c32 (y—ax—ct)’ +c,
3.2 Casell (c, #b)
For this case we have the following equation
a(l+a’)(c, —=b) f"+v(l+a”) f"—(c,—b) f'= 0,

which admits the solution

Cy din  Cy dyp
=—p +— +cp, 37
S d, e d, e 11 (37)
where
1 2 4
dy=———t— —. (38)
’ 20(c,—b) 2\ a'(¢,-b) a(l+a’)
Using Eq. (37) in Eq. (24) we have
C9 din clO d,n
=al—e +— +c |+ 39
g (dl e d, e 11] 1 (39)
Using Egs. (24), (25) and (37) in Eq. (22) we get
Ll|||+2‘L1H: l czf”’ (40)

which has the following solution

A % i o dy | Cpp  -an
- ¢ + +—= +c.n+c,, (41
" beq {dl(dl—@e L@+ n)€ |Tpe Tentae G

where 4 = p* a(b —cl)/(l +a’)
Substituting Eq. (41) into Eq. (25) we get

A .
L, 2 . { = ed‘" — G0 dﬂ}+ a/;lz e "1 acyn +acy,. (42)

= +
b—c, |d(d+21)€ "ad,+1)°€
From Eq. (15) we have
h'=pab-c)f +pa(+a’) f+raey(1+a*)b-c) f'"'+Q2a + a,)1+a’) ' [
-1+ az)LlLl' 5
Integration of the above equation yields

(43)
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h {/’““"Ci) +(1+a2)(ﬂa+aal(b—c1>d1>}% e’

1

+|:@+ (1+ az)(,ua +aa,(b _cl)dZ)}clo edzﬂ

2

+Qa +a)1+a*) e @+ e e + 20,0, e(d' +e2 ’”] (44)

2
A Cy edlzy " o edzq
_ﬂ*(l"'az) b—Cl d1(d1+ﬁ“) dz(d2+}“)
+22 5 e,

where C;i’s i =8...14 are the constants of integration.

Making use of back substitution in Egs. (37), (39), (41), (42) and (44) from Egs.
(18) and (12) respectively, we get the solution in the form of original variables

C9 dy(y—ax—ct) CIO d,(y—ax—ct)
u(x,y,t)z;e +d—e
1 2

C, d,(y-ax—c C d,(y—ax—c
V(x,y’t) = a(je (v lt)*‘fe 2 (y 1t)+cllJ+cl’ (46)
1 2

+c, (45)

A C, d, (y—ax—cit) C d, (y—ax—ct)
H (x,v,t)= c 2 ! Ty 10, ‘
oy =", {dl(dﬁrl)e d,(d, + )€ } )

Cl, —A(y—ax—ct)

/12

- l x—¢ a —ax—c
112(“(:, y,l) 02 1(}" lt)++ Z(y lt)

+ +c,(y—ax—ct)+c,,

b—c, ld(d+1)¢€ d,(d,+ )€
ﬁ —A(y—ax—cyt)

e +ac,(y—ax—ct)+ac,,



Symmetry Reduction of Unsteady MHD Aligned Second Grade Flow 401

b—C | (y—ax—ct
P(5y1) = [%+ (14 a*)(a+ a,a(b —c»dl)}cg gt

1

- {—pa U;_ ) 4 (14 a*) pa+ aya(b - cl)dz)}10 et

2

+ (2(11 ta, )(1 " az) cgz ezdl (y—ax—c,t) n 0102 €2d2 (y—ax—c,t) n 209c10 e(dl +d, J(y—ax—cyt)
_ ) (49)
Cy d,(y—ax—cyt)
e

A | d(d+A)

_ /Ll*(1+a2) b_cl + Co dy(y—ax—ct)
2 d,(d,+2)€
Cl, -A(y-ax—c)
+? +c,(y—ax—ct)+c,

4. CONCLUDING REMARKS

Exact solutions to the nonlinear differential equations governing the flow of an
incompressible MHD aligned second grade fluid were obtained by symmetry method.
The symmetries of translational type were used. It was observed that the translational
symmetries had led to exponential type exact solutions, but in the case 1(c, = b), when

both the velocity components # and v were proportional to each other the solutions
were not of exponential type.
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