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Abstract- In this study, an algorithm is presented for the coupling of finite and 
boundary element method with incompatible interfaces for two dimensional elasticity 
problems. In this approach, the number of nodes at the interface line of finite element 
domain can be different from the number of nodes at the interface line of boundary 
element region. The subregion technique has been used to obtain the coupling model 
and the compatibility requirement is satisfied by distributing the forces for incompatible 
interface. The continuity requirement is satisfied by interpolation equations. After 
satisfying the continuity and compatibility requirements at the interface line, the 
distribution matrix has been used for transformation of nodal forces into nodal tractions. 
Two different case studies have been solved and the results are compared with each 
other, FEM, BEM, ANSYS.  
Keywords- Coupling, FEM, BEM, incompatible interfaces. 

 

1. INTRODUCTION 

The main purpose of coupling of finite element (FE) method (FEM) and 
boundary element (BE) method (BEM) is to use the advantages of both methods for the 
solution of various engineering problems. Both methods have some advantages for 
certain applications. While the BEM gives better results for the surface type problems 
like contact problems, FEM is more effective technique for the domain type problems.   

Zienkiewicz et al.[1] are one of the frontiers of coupling process. They discussed 
the coupling in a general context. Then, Kelly et al.[2] have proposed a method 
obtaining the symmetric stiffness matrices of the BE region which satisfy the 
equilibrium equation and applied the method to a number of field problems in fluid 
mechanics. Furthermore Felippa [3] used the coupling methods for a three dimensional 
structure submerged in an acoustic fluid.  

Later, a number of researchers have been studied on coupling of BE and FE [4-
25]. Finally, authors have been proposed a different approach for coupling process [26, 
27]. The common point of previous studies is to use equal interface nodes for FE and 
BE regions. However, a coupling procedure can be developed for incompatible 
interfaces. 

2. COUPLING FOR COMPATIBLE INTERFACES 

Although the subregion is a technique in BEMs [25], coupling process may be 
thought as a subregional technique due to the division of problem domain into the two 
subdomains as BE and FE. The general form of FE equation can be written as follows: 

         u KF =            (1)  

 It can be rewritten in a form including FE domain and interface sub-matrices as: 
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Where FEF  is the force vector at the FE domain, iFEF
*

 is the internal reaction force 

vector at the interface line, FEu  is the displacement vector at the FE domain and iFEu
*

 

is the internal displacement vector at the interface line. 

 The above equation may be solved for internal reaction force vector, 
*

iFEF  

 After finding the internal reaction force vector at the interface line, the ordinary 

distribution matrix, ∫=
es

dsNtNM  , may be used to transform it into the internal 

traction vector as follows: 

      
**   

ii FEFE tMF =            (3) 

 The Equation (2) can be rewritten in a new form which is similar to general BE 
equation form using the Equation (3); 
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Where I  is the unit matrix, 
iFE

M  is the distribution matrix at the interface line, FEF  is 

the force vector at the FE domain and  
*
FEt   is the internal traction vector at the 

interface line. 
 The general BE equation is as follows; 

         tGuH   =            (5) 
It can also be rewritten including BE and interface BE sub-matrix as follows: 
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Where 
*

iBEt  is the internal traction vector and 
iBE

u  is the real displacement vector. 

 The traction equilibrium must be satisfied for coupling at the interface line as 
follows: 

         **  - 
ii BEFE tt =            (7) 

 Then the Equation (4) may be solved for real displacement vector, 
iBE

u .  After 

finding the real displacement vector at the interface line, the displacement continuity 
requirement can be satisfied for coupling purpose. 

   iBEFE uuu
ii
==             (8) 

As a result, the general coupling equation can be written using Equation (4) and (6); 

       

BE

i

FE

BEBE

FE

BE

i

FE

BEBE

FEFE

t

t

F

GG-

MI

u

u

u

HH

KK

i

i

i

i

         0 

0       
   

        0 

0     
=         (9) 

Due to the formulation of Equation (9), the only interface part of FE force vector has 
been converted to tractions so the remaining part has been kept as original force vector.  
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3. COUPLING FOR INCOMPATIBLE INTERFACES 

 Due to continuity and compatibility requirements at the interface line, the 
number of nodes must be equal to each other for FE and BE interface in the ordinary 
coupling procedure. However, it can be different and continuity and compatibility can 
also be satisfied for incompatible interfaces using the method developed in this study. 
Basically, in a coupling model, there are three different cases. In the first case, the 
number of nodes of FE and BE sides are equal to each other. In the second case, the 
number of nodes of FE interface can be greater than the number of nodes of boundary 
interface. The last case is the reverse of second case as shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 In the first case, the ordinary coupling procedures can be used as discussed in 
Section 2. In the second and third cases, however, the force equilibrium can be satisfied 
as discussed in the Section 3.1. The displacement continuity can also be satisfied by 
following the procedure discussed in the Section 3.2.  
 

3.1. Force Distribution 

Subregional coupling technique gives independent solutions for boundary 
element and finite element region. Because of this, each internal reaction force found by 
the FE region can be treated as concentrated forces given on this point. A concentrated 
force can also be considered as a resultant force of a pressure on one side of a two-
dimensional finite element.  

The pressure acting at an infinitesimal length (ds ), as shown in Figure 2, can be 
expressed as follows;   

nhdsPdF ˆ   −=             (10) 
Where h  is the thickness of the element in the z-direction, n̂  is the unit vector in the 
direction of outward normal to ds . 
 
 
 
 
 

 
 
 
 

  (a)          (b)            (c) 

Figure 1 (a) Ordinary coupling model , 

               (b) Coupling model-1 with uniform meshes, 

               (c) Coupling model-2 with uniform meshes. 
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Figure 2 A pressure loaded 2D finite element from one side. 
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Hence, the virtual work done by the infinitesimal increment of the pressure load, 
dF , on the virtual displacement qδ can be expressed as follows; 

)  (   )( dxvdyuhPqFddW δδδδ +−==
rr

    or  ∫ +−=

element
pressure

dxvdyuhPW )  (  δδδ       (11) 

The virtual displacements can be interpolated over pressurised line as follows; 

∑
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Equation (11) can be written explicitly as follows; 
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The work done by the actual forces during any virtual displacement can be written as 
follows; 

FqW tδδ =           (14) 

and it can be written for a 2-D finite element as follows; 
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By comparing Equations (13) and (15), it can be proved that  

∫−= dyNhPFx ii  )(  ξ  and ∫= dxNhPFy ii  )(  ξ          (16) 

They can be written in an explicit form as follows; 
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For a 2-noded element, they are equal to   
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Where yl  is the length of the element and R  is the resultant force acting on a 

point on the pressurized element. So that each internal reaction force found by FE 
region can be distributed to nodes for incompatible interfaces using Equations (21) and 
(22). For a 3-noded element, they are equal to   

hRFx  
6

1
1 −= ,  hRFx  

6

4
2 −=   and  hRFx  

6

1
3 −=  

and similar equations can be derived for y-components. Internal reaction forces 
can be distributed in the same manner when the FE interface nodes are greater or 
smaller than BE interface nodes. 
3.2. Displacement Continuity 

 When the number of node of FE interface is smaller then the BE interface nodes 
(Figure 3-a), the displacement continuity is satisfied in matching nodes. In the Figure 3-

a, the displacements, bb uu 51 ,...,  are known internal displacements and found by BE 

region.   
bfbfbf uuuuuu 533211                          ===  
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In the reverse case (Figure 3-b), however, the displacements, fff uuu 321 ,,  are known 

internal displacements and found by FE region. The number of known displacements 
are not enough to satisfy the displacement continuity. So that well-known interpolation 
functions can be used to satisfy the displacement continuity as follows: 

bfbfbf uuuuuu 352311                          ===  
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4. CASE STUDIES 

Two different cases have been used for the validations of the developed 
approaches and three different coupling models are used for each case. They refers 
equal number of nodes (CM1), BE interface nodes are greater than FE interface nodes 
(CM2) and FE interface nodes are greater than BE interface nodes (CM3).   
4.1. Axially Loaded Square Plate 

This is a simple axially loaded case as plane stress problem. The dimensions and 
models are shown in the Figure 4. Linear elements are used in models. In this case an 
extra coupling model (CM4) is used to show the effect of nonuniformed boundary 
elements in a coupling model. It contains serious erros as seen in Figure 5 and 6. All 
other models have exactly same results. So nonuniformed BE meshes should not be 
preferred in coupling models. 
 

 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 3 FE and BE displacements for incompatible interface line. 

uf1 

uf2 

uf3 

ub1 
ub2 
ub3 

ub4 

ub5 

ub1 

ub2 

ub3 

uf1 

uf3 

uf5 

uf2 

uf4 

Figure 4 Axially loaded plate and its FEM, BEM and coupling models. 

Coupling Model-2 (CM2) 

Coupling Model-1 (CM1) 

Coupling Model-3 (CM3) 
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Coupling Model-4 (CM4) 
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4.2. Cantilever Beam with a Distributed Load 

 This case represents a steel cantilever beam under the action of a linearly distributed 
load (Figure 7). The vertical displacements and axial stress distributions along the upper 
surface of the beam can be seen in Figure 8 and 9.  All methods are in good agreement 
for the vertical displacement distribution. In the axial stress distribution, CM1 results 
are improved using CM2 and CM3 around the interface line.   
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 Sx distribution along upper 
surface of bar. 

Figure 5 Ux distribution along upper 
surface of bar. 

Figure 8 Uy distribution along upper 
surface of beam. 

Figure 9  Sx distribution along 
upper surface of beam. 

Figure 7 Rectangular plate with a distributed load and its FEM, BEM and coupling models. 

Engineering Problem 
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Coupling Model-1 (CM1) Coupling Model-2 (CM2) Coupling Model-3 (CM3) 
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4.3. Slideway Base 

In this case, a slideway base under the action of weight of the inner part is 
considered. The material of the base is the grey cast iron. Because of the symmetry, half 
base part is modelled as shown in Figure 10 [24]. All methods are in good agreement in 
the axial stress and vertical displacement distributions along line AB ( Figure 11 and 
12). However, the CM1 shows some errors in the vertical stress distribution along line 
CE. It’s errors are reduced in CM2 and CM3 (Figure 13). In the axial stress distribution, 
CM3 results more accurate than other coupling models along the  same line (Figure 14). 
In the vertical stress distribution along line BDF, CM2 and CM3 includes less error than 
CM1 (Figure 15). CM2 and CM3 have similar improvements for CM1 results in the 
horizontal displacement distributions along line BDF as shown in Figure 16.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

Figure 11 Sx distribution along line AB. 
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Figure 10 Slideway base and its FEM, BEM and coupling models. 

Figure 12 Uy distribution along line AB. 
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5. CONCLUSION 

 
 It has been proved that, the coupling procedure of finite and boundary element 
methods may be also carried with incompatible interfaces. The result of ordinary 
coupling method may be improved by independent mesh refinements in both regions. 
The results of coupling models depend on the correctness of the internal forces found by 
FE solutions. So the local mesh refinements may be achieved for the FE meshes without 
changing BE meshes with developed method. All of the problems used in this work are 
2-D elasticity problems. So the idea may be extended for plasticity, coupled and other 
types of problems.   
 

Figure 13 Sy distribution along line CE. 

Figure 15 Sy distribution along line BDF. Figure 16 Ux distribution along line BDF. 

Figure 14 Ux distribution along line CE. 
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