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Abstract- The Robbins-Monro stochastic approximation procedure is modified so as to 
be applicable in the presence of compound delayed observations. The efficiency of the 
modified procedure is investigated. The asymptotic values of the efficiency are 
compared with those obtained by an approximation based on geometric distribution. 
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1. INTRODUCTION 
 Stochastic approximation is a procedure for finding the root of an equation, or 
the solution of a system of equations when the values of the respective function can 
only be observed with experimental errors at recursively determined points. There are a 
large number of papers and literatures (e.g. [2], [3] and [4]) dealing with stochastic 
approximation procedure. 

The procedure for finding the root is called Robbins-Monro procedure (see [5]). The 
Robbins & Monro [5] stochastic approximation procedure is applied in situations when 
the results of experiments become known only after a compound random time delay as 
well as the results of sub-experiments becomes known after a random time delay. The 
results obtained show that the replacement of the procedure in the presence of delayed 
observations by the procedure with compound delayed observations gives, as a rule, a 
satisfactory approximation to the efficiency of the procedure. In principle, however, our 
proposal can be applied to other stochastic approximation or recursive estimation 
procedures.  

 
2.  ROBBINS-MONRO PROCEDURE WITH COMPOUND DELAYED 

OBSERVATIONS 
      The Robbins-Monro stochastic approximation procedure with delayed observations 
has been investigated by Dupač and Herkenrath [1] for a geometrical delay distributi- 
on. In order to eliminate (or at least diminish) time-losses due to delays of observations, 
it has been proposed in this paper to allocate the experiments into K parallel series in 
the following way:  
      The K-series are either open or closed, at points )(k

nk
x , 1 ≤ k ≤ K, at time 0−n . At the 

beginning, i.e. before time n = 1, all series are open, all kn   ’s equal to 1, all )(
1

kx ’s equal 
to the same constant. At time n, an experiment is made at point )(i

ni
x , where i is the open 

series with the smallest in  (and smallest i  among them). The i th series is then closed at 

the same point )(i
ni

x , till time ,0)1)(( −++ ntn  when it opens at point 
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       Here )(xm is a function whose zero point θ is to be found, ),1( xe +ν is the 
observational error corresponding to an observation of m made at point x and becoming 
known during the interval )1,[ +νν ; )(i

ni
x is the current approximation to θ  in the i th 

series at time 0−n ; ,, Nnan ∈  is a zero sequence of positive constants, typically 

00 ),/( nnnaan += is non-negative; )(nt is [the integer part of] the delay of the result of 
an experiment made at time .n  
      If there is no series open at time ,0−n  no experiment is made at time n  and a time 
– loss is thus incurred. If l  is the steady state probability of such a time – loss, then its 
complement le −= 1 is called the efficiency of the procedure.  
      For findingθ , the average of current approximations over all series: 

∑ =
=

K

k
k

nn k
x

K 1
)( ,1θ has been chosen as a global approximation to θ  at time 0−n . Under 

usual assumptions on function m  and errors ),( xne , not repeated here, and under 
independence of delays )(nt , the normed approximations )(2/1 θθ −nn are 
asymptotically normally distributed, with parameters 0 and e/2σ , where 2σ is the 
asymptotic variance of the same normed approximation in a procedure with no delays 
(see [4]). Hence e  is also the relative asymptotic efficiency of nθ as a statistical 
estimator.  
      Allocating experiments into K series is not the only possible approach to the 
problem of stochastic approximation with delays. An alternative approach, not 
discussed in the quoted paper, will be sketched here:  
      There is only a single approximation sequence. Each experiment is partitioned into 
N  parts where each part is treated as a sub-experiment and parts or experiments are 
loosed if no result of the preceding one has become known during the time interval 
between any two consecutive sub-experiments or experiments respectively. 
      This approach is represented throughout two investigated loss systems 0/1//1 BerD  
and 0///2 KBiD derived in the service system theory, identifying the inter-arrival and 
the compound inter-arrival times with n/1  time and unit time interval between sub-
experiments and between experiments, Bernoulli and Binomial service times with the 
delay and the compound delay of the result of a sub-experiment and an experiment, and 
K  inspectors with K  series respectively . 
      Assume that n  parts will be inspected with or without needing repairs, where nN −  
parts are loosed, i.e. they will leave without receiving their inspections, if the inspector 
is occupied. If a part is inspected where the result shows that it needs no repairs, then 

the time of inspection is assumed to be ,01
−

n
 and if the result shows it needs repairs, 

then the time of inspection and repairs is assumed to be 011 −+
n

. 
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      At the beginning, assume that an experiment starts its inspection at time t . If a part 

is inspected without repairs, then it will leave immediately before time 
n

t 1
+ , i.e. at 

time 01
−+

n
t , where the next one arrives at time 

n
t 1
+  and starts its inspection without 

delay. If a part is inspected with repairs, then it will leave before time 11
++

n
t , where 

the inspector is delayed one time unit such that the time delay starts from the arrival of 
the next part.  
       If all the parts of an experiment need no repairs, then the experiment will leave 
immediately before the compound time 1+t , where the next one arrives at time 1+t  
and starts its inspection without delay. If all the parts need no repairs except, for 
example, the last one needs repairs, then the experiment will leave before the compound 
time ,2+t  where the inspector is delayed one time unit such that the time delay starts 
from the arrival of the next experiment. Observe that the result of an experiment 
becomes known only after a compound random time delay, which is produced by taking 
the compound of the delay of its parts. Our proposal can be applied in the presence of 
many biological or lifetime experiments.     
      Let 01 ,nn  be the number of inspected parts that need and need no repairs, 
respectively, where 01 nnn −= . The time delay of an inspected part that needs or needs 
no repairs is denoted by 1d  or 0d  where 1,0, == iidi . Consider the situation that the 

0n  parts are inspected first, followed by the 1n  parts. The process of inspections and 
repairs can be described as follows:  

The i th part, 0,...,2,1 ni = , arrives at time 
n

it 1−
+ , and is inspected immediately without 

delay before time 
n
it + . For nnni ,...,2,1 00 ++=  , the i th part, excluding the loosed 

parts, arrives at time )11)(1( 0
0

n
ni

n
n

t +−−++ , and is inspected with delay (time unit) 

before time )11)(( 0
0

n
ni

n
n

t +−++ . The order of the n   parts in the process is the order 

of their inspections and the corresponding order according to their arrival is 
nrrNnnnn ,...,1,0;,...,2,1,,...,2,1 000 =−++++ . 

The order of the loss parts according to their arrival is rJ SR ; , where  
,2,...,1,0;1)1(,...,2)1( 100 −=+++++++= njnnjnnjnR j  

nRNrNrNSr ,...,1,0;,...,2,1 =+−+−= , 
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The times of arrival of the loss parts is 

1,...,2,1,1;
1
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The loosed parts are not allowed to enter any other free inspector for the delay of one of 
them will loose the next experiment and loss in the system will be increase.  
      According to the described process, it is seen that the compound random time delay 
D  of the experiment can be produced by the compound of the delays 0,...,2,1, niDi =   
and the delays 1,...,1,0, 1 −= njD j  of 0n parts that are inspected first without delays and 
the next 1n parts that are inspected with a time unit delay for each respectively. The 
event that represents the compound delay D  is given by: 

))((
1

0
)1(1

1

1

0

0

∏∏
−

=
+++

=

=
n

j
njn

n

i
i DDD . 

It is clear that the compound random time delay D  can be represented by ( )n
n1

 mutually 
exclusive events each of them represents the compound of the delay of n  parts where 

0n of them are inspected without delay and 1n with a time unit delay. 
      Let 1p and 0p be the probability that a part is inspected with or without delay 
respectively. Then, 

,1,...,1,0,)(
,,...,1,0,)(

111)1(1

000

0
−===

===

+++ njpdDP
nipdDP

njn

i  

where 1,0, =tdt  is the delay with t  time unit. 
Since the delays of the n  parts are independent, then 

( ) ( ) nnppdDPdDPnDP nnn
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       Assume that the K inspectors are in a parallel position, where an experiment 
consisting of N  parts is arrived each time unit. At the beginning all the K inspectors are 
free and an inspector receives an experiment each time unit. If all inspectors are 
occupied, then experiments will be loosed. 
      The process of inspections and repairs of an experiment is described as follows: 
Assume that an experiment enters a free inspector at time instant t  . If it finishes its 
inspections of its parts without repairs before time 1+t , i.e. at time 01−+t ,  then its 
compound random time delay D  equals zero with probability .0

np If it finishes its 
inspections with repairs at time 02 −+t , then D  equals a time unit with probability 

.1
1

0 pnp n− Finally , if it finishes its inspections with repairs at time ,01−++ nt then D  
equals n time units with probability .1

np  
      A study of a service system in the special case 1=N  was given by Dupač and 
Herkenrath [1], where the service time has geometric distribution.  
                                                                                                                                                                          
By the state of the system we usually understand various numerical characteristics 
connected with experiments located in the system at a given moment of time (i.e. enters 
the system but its parts are not yet inspected). The study of the stochastic processes 
describing the behavior in time of these characteristics is the main object of service 
theory. In our study, it is seen that the states of the system are: 

{ }NnKKnniiiiii KK ,...,3,2,...,3,2,,...0);,...,,( 2121 ==≥≤≤≤≤≤ ,     (1) 
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where Kji j ,...,2,1; =  is an integer represents the compound of n  sub experiments that 
are inspected with or without repairs. 
      A standard argument of the queuing theory shows that the system with states (1) 
represents a Markov chain where each of its states consists of K  components and each 
component is produced by the compound of n  sub experiments. A chain with this 
property is called a compound Markov chain and its states are called compound states. 
Note that )0,...,0,0(  is the initial compound state and ),...,2,1( nKnKn +−+− is the 
last possible compound state, where each component is greater than the preceding one, 
that can be reached from the initial compound state. If ,Kn p then there always is at 
least an inspector free, i.e. there is no loss of experiments and the efficiency of the 
procedure equals 1. 
      It is shown that the stationary transition probabilities ijp  of the compound Markov 
chain in the case 2=K  are given by: 
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The number of compound states S that can be reached from the initial compound state 
(0, 0… 0) is given by: 

.
1∑ =

=
n

v vnS  

The states{ }NnKKnniiiiii KK ,...,3,2,...,3,2,,...1);,...,,( 2121 ==≥≤≤≤≤≤ , where all 
the inspectors are occupied, can be eliminated from the system as successive transitions 
from these compound states to compound states contains at least one free inspector and 
occur deterministically, with probability 1. The resulting matrix of transition 
probabilities is called the reduced transition matrix. 
     From the reduced transition matrix we find the following: 
 i) All states are irreducible closed sets; therefore they contain persistent non-null states. 
ii) All states have period 1 because 0)1( fiiP  for all i . 

Then from the previous conditions all states are ergodic (see [2]).In this case, there 
a unique stationary distribution π that can be calculated by solving the system of 
equations: 

                                             ,ππ =TP                                          (2) 
together with the added requirement: 

,11 =πT  
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where T  denotes the transpose of the matrix, π  is the stationary distribution matrix of 
the compound Makov chain; and P  is the matrix of transition probabilities. 
 

3. METHODOLOGY 
 

      To solve the system (2) we use the following steps: 
(1) First, assume the values Kn, to form the transition matrix P . 
(2) Form the system (2) using the transition matrix P . 
(3) One of the remaining equations can always be deleted, another one is to be added, 
namely the requirement ∑

α
απ =1.   

(4) The unknowns απ  withα  containing no 0′ s can be easily eliminated from the 
previous system, as successive transitions from these states to states containing 0′ s 
occur deterministically, with probability 1, where the resulting system is called reduced 
system.  
(5) The reduced system is solved for απ , α  contains at least one 0, using the Matlab 
program (ver.5.3). 
(6) Each assumed value of )(dE  determines a value 1p  that corresponds the 
solution απ withα  contains at least one 0. 
(7) Finally, the solution απ is used to compute efficiency e of the procedure where 
e =∑

α
απ with α  contains at least one 0.  

 
4.  RESULTS AND DISCUSSION 

 
      The asymptotic efficiencies are shown in Table 1, for )10( =n , 9/1,...,9)( =dE , and 
for 4,3,2=K . The results obtained in Table 1, show that the asymptotic efficiencies 
vary directly as the number of inspectors for fixed delay and vary inversely as the time 
delay for fixed number of inspectors. This gives as a rule that: The loss in parts of an 
experiment depends on the number of inspectors and the time of delay. Therefore, to 
minimize the number of loosed parts, increase the number of inspectors or decrease 
delay. 
      In Table 1, the comparison of asymptotic values of ( e ) with those obtained by an 
approximation based on geometric distribution ( ge ), seems to be satisfactory. The 
consequent recommendation for the choice of K  seems to be reasonable even for a 
more general delay distribution not drastically different from the binomial one. The 
headings )(dE  in Table 1 are then made use of, instead of 1p . 
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Table 1. Percentage asymptotic efficiency e  of the proposed procedure with K  
inspectors, binomial-distributed compound delay d  and its approximation by the 

efficiency ge  of a procedure with geometrically-distributed delay gd , parameter gp  

2=K  3=K  4=K  
gp  )(dE ))(( gdE=  1p  

)10( =n  e  ge  e  ge  e  ge  
0.1 9.00 0.900 19.9 19.9 30.0 29.6 38.7 39.2 
0.2 4.00 0.400 39.2 39.0 57.3 56.6 73.1 72.0 
0.3 2.33 0.233 57.3 56.6 80.0 77.7 94.8 91.3 
0.4 1.50 0.150 70.4 71.6 93.7 90.8 99.6 98.2 
0.5 1.00 0.100 85.3 83.3 98.7 97.1  99.8 
0.6 0.67 0.067 94.3 91.6 99.8 99.3   
0.7 0.43 0.043  96.6  99.9   
0.8 0.25 0.025  99.0     
0.9 0.11 0.011  99.9     
100.0 in all empty cells. 
 

5. REFERENCES 
1. V. Dupač and U. Herkenrath, Stochastic Approximation with delayed observations, 
Biometrika, 72, 683-685, 1985. 
 2. J. Harold, G. Kushner and George Yin, Stochastic Approximation and Recursive 
Algorithm and Applications. Application of Mathematics, 35, 1997 . 
3. V. Konev and S. Pergamenshchikov, Sequential estimation in stochastic approxima- 
tion with autoregressive errors in observations. Sequential Analysis, 22, 1-29, 2003. 
4. M. B. Nev'son and R. Z. Khas'miskii, Stochastic approximation and recursive estima-  
tion, English transl. Amer. Math. Society. , (1976). 
5. H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Statist, 
22, 400-407, 1951. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


