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Abstract-The purpose of the work described in this paper is to investigate the use of 
autoregressive (AR) model by using maximum likelihood estimation (MLE) also 
interpretation and performance of this method to extract classifiable features from human 
electroencephalogram (EEG) by using Artificial Neural Networks (ANNs). ANNs are 
evaluated for accuracy, specificity, and sensitivity on classification of each patient into the 
correct two-group categorization: epileptic seizure or non-epileptic seizure. It is observed 
that, ANN classification of EEG signals with AR gives better results and these results can 
also be used for detecting epileptic seizure. 
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1. INTRODUCTION 
 

EEG signals involve a great deal of information about the function of the brain. But 
classification and evaluation of these signals are limited. Since there is no definite criterion 
evaluated by the experts, visual analysis of EEG signals is insufficient. Since routine 
clinical diagnosis needs to analysis of EEG signals, some automation and computer 
techniques have been used for this aim. Since the early days of automatic EEG processing, 
representations based on a Fourier transform have been most commonly applied. This 
approach is based on earlier observations that the EEG spectrum contains some 
characteristic waveforms that fall primarily within four frequency bands— delta (< 4 Hz), 
theta (4–8 Hz), alpha (8–14 Hz), and beta (14–30 Hz). Such methods have proved 
beneficial for various EEG characterizations, but fast Fourier transform (FFT), suffer from 
large noise sensitivity. Parametric power spectrum estimation methods such as AR, reduces 
the spectral loss problems and gives better frequency resolution. Also AR method has an 
advantage over FFT that, it needs shorter duration data records than FFT [1,2]. Also it is 
faster than Continuos Wavelet transform techniques, especially in real time applications 
[18].  

Numerous other techniques from the theory of signal analysis have been used to 
obtain representations and extract the features of interest for classification purposes. Neural 
networks and statistical pattern recognition methods have been applied to EEG analysis. 
Over the past two decades much research has been done with the use of conventional 
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temporal and frequency analyses measures in the detection of epileptic form activity in 
EEGs and comparatively good results have been obtained [1-6]. 

Neural network detection systems have been proposed by a number of researchers 
[7-23]. Pradhan[9] uses the raw EEG as an input to a neural network while Weng [8]  uses 
the features proposed by Gotman [6]  with an adaptive structure neural network, but his 
results show a poor false detection rate. Petrosian, et al., [12]  showed that the ability of 
specifically designed and trained recurrent neural networks (RNN), combined with wavelet 
preprocessing, to predict the onset of epileptic seizures both on scalp and intracranial 
recordings.  Esteller [23] uses linear predictor to find AR coefficients as an input to ANN. 
In this study we used maximum likelihood estimation (MLE) to find AR parameters and 
after that we used these AR coefficients as an input to ANN.  
 The purpose of the work described in this paper is to investigate the practicality of 
using an AR model by using MLE to extract classifiable features from human EEG. The 
success of this study depends on finding a signal representation contains the information 
needed to accurately classify epileptic seizure. Here, AR model with MLE was used to 
define representations. Various feature based on this model was classified with a 
multilayer, feedforward, neural network using the error back-propagation training 
algorithm. Discrimination was performed between a single pair of tasks. An AR with MLE 
representation resulted in the better classification percentages than FFT representation. 

 
2. MATERIALS AND METHOD 

 
2.1. EEG Data Acquisition and Representation 

Epileptic seizure is an abnormality in EEG recordings and is characterized by brief 
and episodic neuronal  synchronous discharges with dramatically increased amplitude. This 
anomalous synchrony may occur in the brain locally (partial seizures) which is seen only in 
a few channels of the EEG signal, or involving the whole brain (generalized seizures) 
which is seen in every channel of the EEG signal.  

Subjects in different age group were recruited for this study. They were known 
epileptics with uncontrolled seizures and were admitted to the neurology department of the 
Medical Faculty Hospital of Dicle University.  These signals belong to several healthy and 
unhealthy (epileptic patients) persons. The signals are collected by a data acquisition 
system which contains data acquisition card (PCI MIO-16-E+ type), signal processors and a 
personnel computer.  Data can be taken in to computer memory quickly by using this card 
which is connected to PCI data bus of the computer. For this system LabVIEW 
programming language was used. The system provides real time data processing.  
 EEG signals are analyzed by using spectral analysis methods to diagnose some 
cerebral diseases. The power spectral density of the signal P(f) found by applying  
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Figure. 1. The scheme of the EEG data acquisition system. 

 
conventional and modern spectral analysis methods such as FFT and AR. The data 
acquisition system for the processing of EEG signals is shown in Fig. 1. 
 
2.2. Autoregressive parameter estimation and MLE 

In the AR model, to find out model parameters Levinson-Durbin algorithm which 
makes use of the solution of the Yule-Walker equations is used. Autocorrelation estimation 
is used for the solution of these equations. After those autocorrelation, AR model 
parameters are estimated. To do that biased form of the autocorrelation estimation is used 
which is given as 
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The aim now is to estimate the AR model parameters by using MLE in the solution of the 
Yule-Walker equations from a record of EEG data. If the maximum likelihood estimate of a 
parameter exists under regular conditions, it is consistent, asymptotically unbiased, 
efficient, and normally distributed. Unfortunately, the maximum likelihood (ML) estimator 
is often too cumbersome to obtain. As this is the case for the EEG model, it is proposed to 
estimate the model parameters by maximizing an approximation of the log-likelihood 
function, known as Whittle’s approximation, the derived estimator is expected to retain the 
properties associated with the ML estimator in an asymptotic sense, but with much less 
complexity. In fact, Whittle’s estimate asymptotically retains the properties of the ML 
estimate for Gaussian random processes, but this is not generally true for the non-Gaussian 
case [2].  
 In many cases it is difficult to evaluate the MLE of the parameter whose power 
spectrum density function (PSDF) is Gaussian due to the need to invert a large dimension 
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covariance matrix. For example, if ( ))(c,~x θ0Ν , the MLE of  θ  is obtained by 
maximizing    
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If the covariance matrix cannot be inverted in closed form, then a search technique will 
require inversion of the NxN matrix for each value of θ to be searched. An alternative 
approximate method can be applied when x is data from a zero mean random process, so 
that covariance matrix is Toeplitz. In such a case, the asymptotic log-likelihood function is 
given by 

∫
−

+−=
2/1

2/1

]
)(

)()([ln
2

2ln
2

);(ln df
fP

fIfPNNxP
xx

xxπθ       (3) 

where 
21

0

)2().(1)( ∑
−

=

−=
N

n

fnjenx
N

fI π
 

is the periodogram of the data and Pxx(f) is the power spectral density (PSD). The 
dependence of the log-likelihood function on θ  is through the PSD. Differentiation of (3) 
produces the necessary conditions for MLE 
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The second derivative allows the Newton-Raphson or scoring method may be implemented 
using the asymptotic likelihood function. This leads to simpler iterative procedures and is 
commonly used in practice. 
 In this study, to find MLE asymptotic form of the log-likelihood given by (3) is 
used. Since the PSD is 
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After some calculations and derivations, the estimated auto correlation function is, 
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and the set of equations to be solved for the approximate MLE of the AR filter parameters 
becomes 
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or in matrix form 
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These are so-called estimated Yule-Walker equations and this is the autocorrelation method 
of linear prediction. Note that the special form of the matrix and the right-hand vector, 
which thereby allow a recursive solution known as the Levinson recursion [1]. To complete 
the discussion explicit form for the MLE of  δu

2  must be determined. From (6)  
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These parameters are used to compute AR spectral power spectral density as  
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In the AR modeling method, the order of the model, namely, the filter, is depend on the 
number of AR coefficients. In the AR method, the model order is identified according to 
different criteria. The selection of the model order in AR spectral estimation is a critical 
subject. Too low order results in a smoothed estimate, while too large order causes spurious 
peaks and general statistical instability. AR spectral estimator offers the promise of higher 
resolution. Their principal shortcomings are that in the case of AR spectral estimation, if 
the assumed model or the dimension of the autocorrelation matrix is inappropriate and if 
the model orders chosen incorrect, then poor spectral estimates will result. Heavy biases 
and/or large variability may be exhibited. In this study, Akaike information criteria (AIC)  
is taken as the base for choosing the model order. According to AIC, model order p=6 was 
taken because the determined model order was lower. In our AR model, MLE is used for 
the solution of the Yule-Walker equations to get AR model parameters[1]. We used  5 AR 
coefficient over time for a 6th

 order model. AR Coefficients over time for seizure-records 
from epileptic patient are shown in Fig. 2. 
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Figure 2: AR Coefficients over time for seizure-records from epileptic patient for a 6th 
order model.  

 
2.3. Spectral analysis of EEG signals 
 In the FFT spectral analysis of the EEG signals some spurious frequencies are seen 
comparing with AR with MLE spectrum. The AR with MLE offers a good quality spectrum 
output in terms of frequency resolution. In Fig. 3 an epileptic EEG signal and FFT of this 
signal are given. If frequency spectrum of FFT is examined, it is seen that there are peaks at 
1 Hz and 3 Hz. AR spectrum of the same signal is presented in Fig. 4. There are peaks at 3 
Hz with higher amplitude, 6 Hz, 9.5 Hz and 13.5 Hz. When we compare these two 
spectrums it is seen that AR spectrum has got sharper peaks and less misleading peaks than 
FFT. Due to this better frequency solution, explanation and determination of the activities 
in the signal is easier by using AR method. Since the signal is taken from an epileptic 
patient, the results fit with the typical characteristics of epilepsy that is delta activity (low 
frequency range) [1]. 
 Fig. 5 shows a normal EEG signal and FFT spectrum of this signal. Spectrum of the 
AR with MLE is given in Fig. 6. If these two spectrums are examined although FFT 
spectrum has got wide and misleading peaks AR spectrum has got sharp and clear peaks. If 
these spectrums are examined, delta activity, alpha activity, and beta activity can be seen 
easily. These results are true because it is a normal EEG signal. Higher variations and 
misleading peaks in FFT spectrum avoid the dominant alpha and delta activities.  

As seen in these figures, the power spectrum obtained by using the FFT method 
does not have good frequency resolution. In addition, some misleading frequencies are seen 
on the FFT method’s spectrums comparing with AR methods’ spectrums. In the case of 
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nonepileptic EEG, lower frequencies are not clear due to misleading frequencies. EEG 
spectrums obtained by AR method are clearer and have higher spectral resolution compared 
with FFT. FFT is an inconsistent spectral estimator which continues to fluctuate around the 
true PSD. Often, the spectral leakage masks weak signals that are present in the data. 
Smearing and spectral leakage are particularly critical for spectra with large amplitude 
ranges, such as peaky spectra. Since, power spectrum obtained by using FFT is not clear, 
AR with MLE gives better performance for spectral resolution than FFT.  
 As a result, when AR with MLE approach is compared for their resolution and 
interpretation performance, it is determined that the AR approach is better for the use in 
ANN as preprocessing method in clinical and research areas, because of the clear spectra, 
which are obtained by it.  

 
Figure 3. Epileptic EEG signal and its FFT. 

 

Figure 4.  AR Spectrum of epileptic EEG signal. 
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Figure 5. Normal EEG signal and its FFT. 

 

Figure 6. AR Spectrum of normal EEG signal 
 
 

2.4. Artificial Neural Network Classifier 
 ANNs consist of a great number of processing elements (neurons), which are 
connected with each other; the strengths of the connections are called weights. For the 
modeling of physical systems, a feedforward multilayered neural network is commonly 
used. It consists of a layer of input neurons, a layer of output neurons and one or more 
hidden layers. In order to cope with nonlinearly separable problems, additional layer(s) of 
neurons placed between the input layer (containing input nodes) and the output neuron are 
needed leading to the MLP architecture, as shown in Fig. 7. We used five input neurons for 
AR and 18 input neuron for FFT. The network topology is the standard feedforward 
network with a single hidden layer. The number of output neuron is two, and the number of 
hidden unit neuron is chosen as 20.  Since the intermediate layers do not interact with the 
external environment, they are called hidden layers and their nodes called hidden nodes. 
The addition of intermediate layers revived the perceptron by extending its ability to solve 
nonlinear classification problems. In ANNs, the knowledge lies in the interconnection 
weights between neurons. Therefore, training process is an important characteristic of the 
ANN methodology, whereby representative examples of the knowledge are iteratively 
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presented to the network, so that it can integrate this knowledge within its structure. No 
assumption is needed about the underlying data probability distributions when ANN is used 
for pattern classification. Once trained, it can be configured to perform adaptively to 
improve its performance over time [19-23].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Artificial neural network architecture. 
 
Although rules for neural network optimization are under development, neural 

network architectures are derived by trial and error. The determination of appropriate 
number of hidden layers is one of the most critical tasks in neural network design. Unlike 
the input and output layers, one starts with no prior knowledge as to the number of hidden 
layers. A network with too few hidden nodes would be incapable of differentiating between 
complex patterns leading to only a linear estimate of the actual trend. In contrast, if the 
network has too many hidden nodes it will follow the noise in the data due to 
overparameterization leading to poor generalization for untrained data. With increasing 
number of hidden layers, training becomes excessively time-consuming. The most popular 
approach to finding the optimal number of hidden layers is by trial and error [22]. In the 
present study, MLP network consisted of one input layer, one hidden layer, and one output 
layer and the decision about the number of hidden layers in use was given as empirically.  

MLP ANN was used because it is appropriate for solving pattern classification 
problems where supervised learning is implemented with backpropagation algorithm. The 
advantage of using this type of ANN is the rapid execution of the trained network, which is 
particularly advantageous in signal processing applications [20-22].  

In most applications of MLP, the weights are determined by means of the 
backpropagation algorithm, which is based on searching an error surface (error as a 
function of ANN weights) using gradient descent for points with minimum error [20-22]. 
During the training phase, the weights are successively adjusted based on a set of inputs 
and the corresponding set of desired output targets. Each iteration in backpropagation 

Hidden Layer 

Epileptic 

Input Layer Output Layer 

FFT or AR 
coefficients 

Normal 
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constitutes two sweeps: forward activation to produce a solution, and a backward 
propagation of the computed error to modify the weights. The forward and backward 
sweeps are performed repeatedly until the ANN solution agrees with the desired value 
within a prespecified tolerance. The backpropagation algorithm provides the needed weight 
adjustments in the backward sweep [21, 22]. The backpropagation algorithm is a nonlinear 
procedure because of the nonlinear threshold element contained in each node, and its 
behavior is very complex because of the layered structure. However, this nonlinear 
behavior allows a perceptron to generate highly complex decision regions, which is a 
desirable property for pattern classification [21]. MLP neural networks employing 
backpropagation training algorithm are so versatile and can be used for signal processing, 
image compression, pattern recognition, medical diagnosis, prediction, classification, 
nonlinear system modeling, and control [19, 20]. Since backpropagation training algorithm 
has rapid execution and has widely used in pattern classification problems, MLP neural 
network employing backpropagation training algorithm was used to predict the presence or 
absence of epileptic seizure.  

A fully-connected network is employed and the standard backpropagation algorithm 
with momentum and adaptive learning rate employed, with parameters as in Table 1. 
Learning coefficients and momentum values for different number of iterations are given in 
Table 2. With regard to the adaptive learning rate, the rate is increased (by a factor of LRI) 
following an improvement in the SSE, but if the error ratio exceeds MER, the learning rate 
is decreased by a factor of LRD as shown in Fig. 8. Such an adaptation speeds up 
convergence considerably. We performed the following cross-validation procedure for 
training the network as a way to control the over-fitting of training data. We randomly 
select 60% of the data set for training the network and 20% of the data for validation after 
each training epoch. The error of the network on the validation data is calculated after every 
pass, or epoch, through the training data. This best network is then applied to the remaining 
20% of the data, referred to as the test set. All representations were classified using 
different random selections of train, validation, and test sets and initial weight values [13]. 

 
Table 1. Neural network training parameters 

Sum squared error (SSE) goal 10-5 
Initial learning rate coefficient 0.01 
Learning rate increase (LRI) 1.05 
Learning rate decrease (LRD) 0.7 
Momentum coefficient 0.95 
Maximum error ratio (MER) 1.04 
 
Table 2. Learning Coefficients and Momentum Values for Different Number of Iterations 

Iteration Learning coefficient Momentum 
2,000 0.001 0.02 
4,000 0.0035 0.0042 
8,000 0.00001 0.00001 
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Figure 8. Graphics of Sum-Squared Error vs. epochs 
 

3. RESULTS AND DISCUSSION 
 

In this study we used FFT and AR with MLE parameters used as an input to ANN. 
ANN is trained with data preprocessed by FFT and AR with MLE. Potential confusions 
that the classifier can be identified by the relatively high responses of an output unit for test 
segments that do not correspond to the task represented by that output unit. For this trial, 
averaging over 20 segments results in 92% correct, but performance is not improved this 
much on all trials. The best classification performance for the network, averaged over all 30 
repetitions, is achieved by averaging over all segments. 
 Results for the baseline performance of the best performing backpropagation neural 
network using AR with MLE and FFT are shown in Table 3. Accuracy is the total 
percentage of correct predictions. Specificity is the percentage of correct predictions for 
patients that had epileptic seizures during the EEG and sensitivity is the percentage of 
correct predictions for patients that did not have epileptic seizures.  
 We achieved a classification rate of 92.3% by using a neural network with a single 
hidden unit as a classifier. The results are averages over 30 runs, each run with different 
combinations of train, test, and validate sets and different initial weight values. The 
validation and test sets each contained 20% of the total number of feature vectors, with the 
rest in the training set. The classification rates are the 90% confidence intervals. Although 
the error on the training data decreases as the number of hidden unit increases, the error on 
the test data does not change significantly with the number of hidden units. This suggests 
that we can not do much better than a linear classifier with this representation. The 
classification percentages of AR with MLE on test data are above 92%. An average of  
91% classification is achieved by using FFT as preprocessing in the neural net.  
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Table 3. Seizure classification performance of ANN with AR and FFT. 

Preprocessing method Accuracy Specifity Sensitivity 
AR with MLE 92.3 96.2 90.3 
FFT 91.6 93.6 89.8 

 
From Table 3, the backpropagation artificial neural network outperforms on both 

overall accuracy and sensitivity. One can see when looking at the averages across subjects 
that the AR with MLE gives the best classification accuracies at 92.3%, but not by much. 
The FFT preprocessing performs slightly worse at 91%. The AR with MLE model is better 
at specifity, because it classifies almost 96.2 percent of the patients as epileptic seizure 
patients. 
 Our results show that the AR with MLE is the most consistent feature vector. 
However, if in the future many subjects are to be tested and computation time is an issue, 
FFT preprocessing appears to be the best choice. 
 

4. CONCLUSION 
 

In this study the FFT and AR spectrums which have Maximum Likelihood 
Estimation (MLE) optimization of epileptic and normal EEG signals are used as an input to 
an artificial neural network that could be used to discriminate between the two tasks with 
greater than 92% accuracy. To get AR method model parameters, MLE which has wide 
applications in statistics is used. This type of result might be marginally acceptable for a 
real-time system based on two commands for some subjects. As compared to methods such 
as FFT, it is seen that the classification accuracy of AR with MLE is better; but when the 
processing speed or time is considered FFT may be more suitable. If we compare to other 
methods (such as wavelet etc.)  speed of the AR with MLE is better and classification is 
acceptable [18]. Cluster analysis was applied to learned weight vectors, revealing some of 
the acquired relationships between representation components and mental tasks. The results 
of clustering can be used both for the construction of lower-dimensional representations 
and for investigating hypotheses regarding differences in brain activity related to different 
cognitive behaviour. One of the strengths of this study is its rigorous training procedure 
involving cross-validation, early stopping, and a large number of training repetitions. Early 
stopping is one of the simplest methods for limiting the complexity of a network. The most 
likely route to better performance is to test other EEG signal representations. We have 
presented a method for the automatic classification of seizures. The system performance 
would be improved by replacing the linear AR predictive model with a nonlinear model and 
using the coefficients of the nonlinear model as the signal representation.  
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