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ABSTRACT: The calculation for the buckling of a short bar IDlder compression occurs normally through the neglect of
its own weight. This method is no longer permissible for long heavy bars. In this case, the net weight must be taken into
consideration. Such long heavy bars can be f01md.,for example, as drilling-risers in ocean exploration technology, as
schafts in mining, as steel turrets for the production of energy and as naturally grown mammoth trees.

In this paper, the critical buckling forces are derived from ten end conditions for heavy bars which are sUIrOlmded by
air and burdened by compression. There is an analytical solution to the differential equation of the problem which
requires a numerical evaluation. Limited computer capacity permits calculations of critical buckling forces only up to a
certain length. An analytical solution to the differential equation must be developed asymptotically for long heavy bars.
With the help of this asymptotic evaluation, the critical buckling forces for long heavy bars are fOlmd.

In general the buckling of a short bar under compression is calculated by ignoring the bar's
own weight. This method, however, can not be applied to long bars for some economical
reasons.

It is possible to see long bar applications in different industrial areas; such as drilling risers in
mining and oil exploration, long chimneys, and steel towers to produce electric energy from
wind.

With considering bar's own weight, Greenhill [5] (1881) was the first to calculate critical
buckling load under compression for one end condition. Later on Willers [9] (1941)
calculated these loads for five different end conditions of limited long bars by using Bessel
and Lommel functions. Airy functions were used by Plunkett [8] (1967) to find the buckling
loads of very long bars for two end conditions. Hapel [6] (1976) also used Bessel and
Lommel functions for his calculations for one end condition, and his result was different than
Willers'. In their study, Bemitsas and Kokkinis [1-4] (1981-1984) used Airy functions to
calculate buckling forces for eight different end conditions. Their result and Hapel's are
similar although they used different methods. They also pointed out that Willers' some
results were different because Willers took only limited number of asymptotic seri members
into account.

The Author [7] (1996) used Bessel and Lommel functions to calculate buckling loads of
heavy bars under compression for ten different end conditions. The results show that
Bernitsas and Kokkinis' calculations are correct. However, this paper will show that Willers'
fault was not of taking only the first two terms of the asymptotic series into account as
Bernitsas and Kokkinis claimed.



\
LM"

As can be seen from the free body diagram of a bar, following differential equation is found
when calculating static balance forces and moments:
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This equation is called as Bessel Differential equation. Here,
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The solution of this differential equation is known:
¢(0 = c1 S 1(0 + c2 J1 (0 + c3 J 1(0 .

0'3 3 3

In this equation J1 (0 and J 1(0 are called as Bessel functions, and
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called as Lommel function.

With the help of this solution w and derivatives of w are calculated from equation (1). From
end conditions, the critical buckling forces are calculated for every ten end conditions.

As ( t; ) is getting higher, in these Bessel and Lommel functions a great number of series'
terms should be taken into account, if computer has sufficient capacity. In this case
asymptotic expansions can be use. At the top end of the bar the specific variable of equation,
which can be expressed by asymptotic expansions, is as follows:
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Table I below shows Bessel and Lommel expansions for the top end of the bar with
comparison of Willers' results. From these expansions derivatives of w in equation (I) can
be found. From end conditions, critical buckling forces of very long bars can also be
calculated. Solutions often different end conditions are presented in Figure 2.
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As can be considered from Table 1, Willers did not consider -1]0 i as 1]0 i . Secondly in
the Lomme1 function expansion T3(l1o) was ignored by Willers. Finally instead of T2(l1o),
he found the equations in the brackets which are not correct.
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critical buckling forces are calculated for ten different end conditions. Results are shown in
Table 2, with comparisons of other authers.

In conclusion, this study solves the conflict between two different methods; Airy and Bessel
functions, when calculating critical buckling forces of very long bars.
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Author I':nd Cond i t ion,}

II I 12 13 14 21 22 23 31 32 41
WILLERS (1941) 3,09 1,88 1,0188 3,09 1,88 - - - -

PLUNKETT (1967) - - - 1,0188 - - - - - 2,3381

HAPEL (1976) - - - - - 1. 02 - - - -
BERt'.-KOK. (1982) 2,338 1,018 - 1,018 2,338 1,018 - 2.338 1,018 2,3381
I)ZDAHAR (l996) 2,3381 1,0188 2,3381 1. 0188 2,3381 1.0188 2,3381 2.3381 1,0188 2,3381
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Figure 3: Dimensionless critical buckling forces vs dimensionless bar length


