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THE GROUP OF TWIST KNOTS

Yilmaz Altin*® Mehmet Emin Bozhiiyiik**

ABSTRACT. In this paper some interesting invariants of twist knots are calculated.
Especially the first homotopy and the first homology groups of all three sheeted
branched covering spaces of the three dimensional sphere branched over twist

knots are given.

LINTRODUCTION. In this paper the invertibility, non-amphicheirality (expect two
of them), the Alexander matrix, the Alexander polynominal, the genus, the knot
groups and all three sheeted branched covering spaces of twist knots are presented.

Twist knots are in a certain sense generalizations of the trefoil knot (5), the
figure-eight knot (6, 10) and the Stevedore's knot (10). These knots are listed as
31 41 and 6] knots in the table given at the end of Knothentheorie by Reidemeiser
(12). In that table, the knots listed as 5-. 7. 81 and 9» are also twist knots.

A twist knot with n half-twists 1s denoted by T,,. See figure la. Twist knots
are alternating knots and the number of haif-twists determine them. Namely, T,
and Ty, are equivalent if and only if n =m.

Twist knots are also known as Whitehead doubles of the trival knot, the
circle (15). Whitehead, using Seifert's method (14) and his original method of
calculation gives the following results for the Alexander polynomial of doubled
knots.

+A(t) =pt* = (2p+1)t+p iEp =0

Alt) =1 if p=0
where the integer p denotes the complete twists in the doubled knots. Comparing
these with the Alexander polynomials obtained below one can see that the
Whitehead doubles of the trival knot with p>0 and p<0 complete twists
corresponds to Ty and T.o, | respectively. This can be seen by Reidemeister's
moves (12) on the normal diagrams of T, also.

Bing and Martin (4), studied twist knots and showed by an algebraic
method that twist knots satisfy "the Poincare property".
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We published some invariants of an equivalent class of knots under the
name "Shepherd's knots" in Turkish (2, 3). This name is given to these knots
because of their normal diagrams resembling a shepherd who wears acape. See
Figure 1b. In (2) it was shown that the three sphere S3. has a three sheeted cyclic
branched covering space branched over every
twist knots. As 1t 1s expected, the first homology groups of these covering spaces
are direct doubles of a cyclic group (11).

In (7), it was shown that S3 has athree sheeted irregular covering spaces
branched over T only for n=6m + 1 andn=6m +4 (m=0,1,2,...) since twist
knots are with 2-bridges all these covering spaces of S3 which are also called three
sheeted dihedral covering spaces, are again just three dimensional spheres (13, 8).

Here some detailed proofs are given

S

n half twists

n halt twists

A

a. The twist khot T}, b. The Shepherd's knot.

Figure 1.

2. SOME BASIC DEFINITIONS IN KNOT THEORY

Definition 1. A homeomorphic image (an embedding) K of the unit circle
(X, y): x2+y2 =1} into S3 is called a knot (10). Namely a knot 1s a simple closed
curve in S3.

Definition 2. Two orniented knots K and L are called equivalent if there
exists an orientation preserving homeomorphism of S3 onto itself which maps K
onto L (10).

Definition 3. A knot K 1s called invertible if there exists an orientation
preserving homeomorphism f: §3 -5 S3 | such that the restriction f| K is an
orientation reversing homeomorphism of K onto itself (10).

All twist knots are invertible. One has only to turn them over.



Definition 4. A knot K is called amphicheiral if 1t 1s equivalent to its mirror
image.
Definition 5. The fundamental group (the first homotopy group) of S3 -
K 1s called the knot group of the knot K (10).
Definition 6. Let (x), xo. ..Xp 1y, 12, ..1;y) be a presentation of a
knot group G=m|(S3-K). The matrix (ajj) defined by
a, :QO[-?~‘~ ) =L m =l e

XS
1s called the Alexander matrix of G (or of K), where « is Abelianizer of G and
¢/ ox are Fox's free derivatives (10)

Definition 7. For any integer k>0 the k th knot polynomial of a finite
presentation G=(x|, x2, .Xp |, 12, .Iy) of a knot group is the greatest
common divisor of the determinants of all (n-k)x(n-k) submatrices of the
Alexander matrix of G. The first knot polynomial A(t) is called the Alexander
polynomial of the knot group (or the knot) (10).

Definition 8. A surface with only one boundary which takes a given knot
as its boundary 1s called a spanning surface of the knot (11, 14).

Definition 9. The minimum of genera of oriented surfaces which span a
knot is called the genus of the knot (11, 14).

3. SOME INTERESTING PROPERTIES OF TWIST KNOTS

Theorem 1. All twist knots are invertible.

Theorem 2. All twist knots expect T, and T, are not amphicherial.

Proof. Every twist knot is a knot with two bridges. Namely To and Top 4

~

are equivalent to (4k + 1, 2k + 1) and (4k + 3, 2k + 1) - two bridge knots
respecttively According to Schubert (13), (o, f)-two bridge knot 1s amphicheiral if
B2= (-1) (mod 2a).
This congruence for T, becomes
(2k + 1)2 = (-1) (mod (8k + 2))
and it holds only when k = 0 or 1. Namely only 7, and 7, are amphicheiral. For
T+ the above congruence becomes
(2k + 1)2 = (-1) (mod (8k + 6))
and this can not be satisfied for any natural number k. Thus except 7, and 7. all
twist knots are not amphicheiral.
Theorem 3. The Alexander matrices of T~y and Top+ | are different.
Proof. The Alexander matrix of T} is denoted Mn. M», and Mo+ are

calculated by Alexander's original method in (2)and are given below.



-1 x 01 -x 0 0 0 0 0 0
-x x 1 0 -1 0 0 0o 0 0 0
0 01 x -x -1 0 0 0 0 0
0 0 x 1 0 -1 -x 0 0 0 0
E
Mln =1 -
0 01 x 0 0 0 -x -1 0
0 0 x 1 0 0 0 —
0 0 1 x O 0 —x -1
|
~x 0 x 1 0 0 g -l
—x 1 0 -1 0 0 0 0
% x | =] 0 o0 0 O
0 0 x 1 -1 -x 6 0 0 0
01 x 0 -x -l 0 0 0 0
Min'l :: )
0 01 x 0 0 0 —x =1 0 @
0 0 x 1 0 0 0 0 -1 —x 0
%o 01 x 0 0 0 0 0 -x -l
-x 00x 1 0 0 0 0 0 0 -1

Alexander's original method 1s given in (1).
Theorem 4. The Alexander polynominals of Ty, and Top+ are different

and are as follows respectively:
A(t)=nt* =2n+ Dt +n

A(t)=(n+1)1" —(2n+1)1 +(n+1).
Proof. These results follow as in (2) and (3). from the definition 7 and the

theorem 3.
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Theorem 5. The genus of any twist knot T, for n0, is equal to one.

Proof. This theorem is a corollary of the theorem 4 and follows from a
theorem of Crowell (9), which states "The genus of an alternating knot is equal to
the half of the degree of its Alexander polynominal".

A geometric method (cut and paste) is used to prove theorem 5 in (3).

4. THE PRESENTATION OF THE GROUP OF TWIST KNOTS

The group of twist knot Tn, nl(S3—Tn), is denoted by Gy,.

Theorem 6. Gy, and Gp+1 are not isomorphic.

Proof. The groups Gpp and Gop+1 are obtained by Wirtinger's method in
(4). Their calculations are justified by Dehn's method in (2). These are as follows :

G,

b,c:5(be)" b(Be) " b(be)" b(be) " = 1’

ni=

G =

2n+1

b, c:E(Bc)n+1 E:'(Bc)_"_l b(gc)n+1 c(Ec)v“_1 = 1'

Here and later X means x"1. Since the lengths of the relations in Go,, and Gop+1
are different and no contractions occur these groups are obviously not isomorphic.

5. THREE SHEETED COVERING SPACES OF TWIST KNOTS

In this section the following notations are used.

S3, the symetric gpoup of order six.

Z,, the three sheeted (cyclic in 5.1 and 5.2, irreguler in 5.3 and 5.4)
branched covering space of S3-Tn, branched over Tj,.

Op,the branch curve in X lying over Ty,

A =T, (3 o ), the first homotopy group of (Z,-0,).

B=u (X.), the first homotopy group of ,2,

H, ( 2. ), the first integral homology group of >

All twist knot groups accept at least one representation in S,. Namely the
cyclic representation. f:G_ — S, , f(b)=f(c)=(123). But only the groups of T,
and T, .
and n=6m+4

h:G_, — S, ,h(b)=(12), h(c)=(23).

According to the results obtained by Fox's algorithm (11) the three sheeted

m+1

, (m=0,12,.) accept a arepresentation onto S,. Namely for n=6m+1

covering spaces of S® branched over twist knots (simply called covering space of
twist knots) can be devided into four classes.
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5.1.THE THREE SHEETED CYCLIC COVERING SPACE OF T,_

According to the fundamental theorem of covering spaces (11) the cyclic
representation .G, — S,, f(b)=f(c)=(123) corresponds to a three sheeted

regular covering space of §° — T}, . Sincef(l;) = 7(2)=(132) the following

table 1 shows that f takes the relation of G, onto the identity permutation in S,

3 23 23 g 312 19 12183 31

2 R N 2 2 303 D3 D N e D

302 120 12 32323 3] 31 3 23 23

n n n n
Table 1.

By Fox's algorithm which 1s equivalent to Reidemeister-Schreier's Theorem
(11, pages 146-148) one obtains the following free product 4,, * F, .

by G(bie) by (€b,) b, (Be,) B (Eb,)" =1
Aln*Flzibfz’ci: c SC%)nbl(Exbx)nb:(B:C:)n 2(Elb1)n =
. n .;(Ewbz)n —
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Where F, is a free group of rank 2. As generators of F, one can choose ¢,
and ¢,. Adjomning ¢, =1, ¢, =1

to A, *F, oneeliminates F, and obtains
A

2n°

I 1 n
bk, bbb (b)) b b =1
C] ,b3 C:lib}—nblb;*lb?;nb;:zw]b;nbzn = 1

4 =

2n

The branch relations are b,b,b, =1, ¢,c,c; =1  whichreduce toc, =1and

b, =(b,b, ) Adjoining these to A, and denoting b, and b, with x and y
respectively one obtains

x oy T(xy) " x(xy) " =1

Bln: : n n-1 0 p+l ni_
v (xy)"xy™ (xy)"y" " (xy)"y" =1
|

Hence, Hl(Z:n 12, BT 0
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5.2 THE THREE SHEETED CYCLIC COVERING SPACE OF T

2n+1

The cyclic representation h:Gh:G,,., = S;, h(b) = h(c) = (123)corresponds to a
three sheeted regular covering space of $* —~ T, ., . Since h(B) =h(c) =(132) the
following tabel 2shows that h takes the relation of G,__, onto the identitly permu -
tation in §;.

13 23..23 2 12..12 3 23..23 131.. 31
21 31...31323..23131...31212..12
32 12..12131.. 312 12 .. 12 323..23
n+1 n+1 n+1 n+l
Table 2.

Again by Fox's algorithm one has

bl’bz Es(gzcz)ml 62(61b1)n“b2(gzcz) 03(62b3)n+1 =1
A *Fy=1bs 00 T (6303)n+1 ES(Egbz)n+] bg,(E3(:3)m1 Cl(Elbl)n+l =
lcz’cs EZ(EICI )A’HEI(Esbs)n”bl(glcl)nﬂcz(ézbz)“+1 = 1

As generatos of F, one can choose ¢, and c;. Adjoining c, =1,c, =1 to

A, ., *F, oneeliminates F, and obtains A, ., as follows,
b,.b, b (8,b, )" b;b =
A, . = . ¢,b™'b™bs ¢, (5,b,)"" =1
c,.b, (5,c,)" ¢;'b2,(Bc,) b2 =1

After adjoining the branch relations b,b,b, =1, c,c,c, =1 which reduce to
c,=1,b,=(bb,)" to A,,., anddenoting b, and b, withx andy

respectively one obtains B

2n+1°

x y™ %™y (xy) " =1
B, = :
y ){xﬂy—n—lxn(xy)zn‘*zynx»nAlyn-ﬂ =
Heﬂce, Hl (zlncl ) = ZSn+2 @ 23n+2'

5.3 THREE SHEETED IRREGULAR COVERING SPACE OF T,
The presentation of the group of T, ., 1s

m+1

Gopr = 2y (&)™ (Ey) ™ ()™ H(329) ™ = 1.
The mapping h:G,_., > S;, h(x) =(12), h(y)=(23) is a representation o
T

6m-+1

ontoS, This representation corresponds to a three sheeted covering space of
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T,..,  The groups A, , and B, are again found by Fox's method. One can see

that 3 is a homotopy sphere.
ab x (@yx)"a'y (ybax)" y b (byxa)” b y(axyb)" a =
i -y (Byxa)" b ' yaEyb)" a(xaby)” x* (¥yba)"x ' =1
X,y (xaby)" (xyba)" x 'alabyx)" a ' y(ybax)" y b =1
_4—7”2 ):{1}-
Hence Hl(zém_1 j="{ok
Theorem 7. The three sheeted irregular branched covering space ) s - OF
T

<. 15 a three sphere.

Proof. Since the twist knot T, , 1s (12m+3,6m+1) two bridge knot and
three sheeted irregular covering space of (a,B) two bridge knot is S* by Burde's

theorem (8), the theorem follows.
5.4. THE THREE SHEETED IRREGULAR COVERING SPACEOF T

6m+-4

The presentation of the group of T, _,
Gim.s = \x,yi(iy)ﬁm’z x(%y) " x(%y) " ko (" y) " ‘
The mapping f: G,_., = S;, f(x) = (12), f(y) = (23) 1s a representation of
G, .onto S,. This representation corresponds to a three sheeted irregular

covering space of T, .. The groups A, , and B, , are obtained by similar

6me
calculations.
a,b (abyx) “xa(xyba)”™ ab(gyxﬁ)mvl(ybaf)m' &
T - (Byxa)” a(ybaw)"" x(xaby)” xay(at yjb)" a¥ = 1
X,y (xaby)" xay(ax yb)" axa(abyx)"
Boto=11k

Hence H (Y, )={0} Thus ¥ _ , isahomotopy sphere.

Theorem 8. The three sheeted irregular branched covering space of T,

m+4
is a three sphere.
Proof. Since the twist knot T.

6mi+4

1s (12m+9 , 6m+5) two bridge knot the
theorem follows from Burde's theorem (8).
The results obtained here classify all three sheeted branched covering

spaces of all twist knots.
Is there a geometric proof of theorem 7 or 8 ?
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