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In this article the symmetries of a class of nonlinear telegraph
equations are examined. These equations represent a physical model
describing electro magnetic shock waves. The main interest is concen-
trated on potential symmetries but Lie point and non classical sym-
metries are also calculated. With the aid of these symmetries explicit
new solutions are derived or given implicitly by defining equations.

One of the few systematic ways for finding solutions of nonlinear differential
equations is a symmetry analysis. With a symmetry analysis a classification
of the differential equations and their properties is possible, too. The origi-
nal method was discovered by the Norwegian S. Lie to determine the point
transformations under which the given differential equation is invariant. In
course of time the original method due to Lie has been extended to various
generalisations. In 1969 Bluman and Cole have proposed a generalisation of
Lie's method which they called the non classical method of symmetry reduc-
tion or in short the non classical method [10, 13]. Another way for finding
new symmetries of a differential equation is to analyse not only the original
equation but an extended system of differential equations from which the
solutions of the original equation can be be derived. That leads to potential



systems and potential symmetries. With these methods new solutions and
symmetries of differential equations can be found not obtainable with Lie's
original method. Lie's method is also used to decide whether a differential
equation can be linearized by an invertible mapping or not. To linearize a
differential equation an algorithm was proposed by BIuman [4]. In this article
we want to show the use of potential systems and potential symmetries to
discover new solutions and to find linearisations. In section 2 Lie's method
to determine symmetries of a differential equation is discussed and a formu-
lation based on the Frechet derivative is introduced. A short overview of
the non classical method which is also useful in studying potential systems
is given. Section 3 deals with potential systems and potential symmetries.
The determination of potential systems and the properties of potential sym-
metries is presented. These symmetries are treated for a class of nonlinear
telegraph equations in section 4. In section 5 a special type of nonlinear tele-
graph equations included in this class is discussed in detail. The potential
symmetries are compared with other symmetries of this equation and explicit
solutions are given. The obtained results are summarized in section 6.

2 Symmetries of differential equations
A useful tool for finding new solutions of a system of partial differential
equations is the procedure of symmetry analysis. The original method to
determine the symmetry group for a system was developed by Lie [1, 2].
This method allows to compute classes of exact solutions which are invariant
under the transformations representing the symmetry group. In addition to
this property the algorithm proposed by Lie can be used to discover new
solutions by constructing them from old ones and to classify the symmetry
properties of PDEs.

To exemplify Lie's method let us first discuss the general procedure [3,
4J. The general case of a nonlinear system of PDEs with the order k is
represented by differential functions

with n independent variables x = (Xl"" xn) and m dependent variables
u = (ut, ... ,urn); u(k) denotes all derivatives of the dependent variables u up



to the order k. Partial derivatives of the dependent variables are written in
the notion of multi-indices J = (j1, ... , jp) and

apull

Ull- -----J- ax jt ... ax jp •

The equations ~v are assumed to be smooth functions of their arguments.
Lie's method determines the infinitesimal point transformations under which
the solutions of (1) are invariant. The point transformations can be charac-
terized by the infinitesimal generator

m a
x = L TlIl(x, U(l») aull

/.=1

where TIll is linear in the first derivative of the dependent variables ull. Ac-
cording to this condition TIll can be expressed in the form

n

TIll = <P1l(X,u) - L ei(X, u)ut·
i=l

with <Pmu and ei the so-called infinitesimals. These infinitesimals are con-
nected to infinitesimal point transformations of the independent and depen-
dent variables by the relation

xi - Xi + Eei(X,U) +O(E2
)

(ull)* ull + E<PIl(X,U) + O(E2
).

(4)
(5)

The invariance criterion for the point transformations with the generator
X which map solutions of (1) into other solutions of (1) can be formulated
with the Frechet derivative DLl of ~ [3, 14}:

m

L(DLl)vll TlIlILl=O = O.
1l=1

The equation (6) must hold for TI if u(x) is a solution of ~ = O.
The Frechet derivative DLlTl is the differential operator which is defined

by the relation [3}



By evaluating explicitly the expression (7) the Frechet derivative can be
expressed by an m x m matrix differential operator

where Di denotes the total derivative
f) m f) m a

Di = ~ + :L uf ~ 11. + :L :L uj,i ~ Il."
UX, _,=1 UU, 11.=1J UUJ

So D,J := Dj1 ••• Djp can be composed of single total derivatives.
The determining equations for TJ resulting from the invariance criterion

(6) are a linear over determined system of PDEs in x and u. There exist
various programmes in different computer algebra system for calculating the
determining equations (and solving them automatically or interactively), e.g.
in MATHEMATICA [5],MAPLE [8],REDUCE [7],MACSYMA [6]and in AXIOM
[7].

With the calculated infinitesimals ei and </>11. finite symmetry transforma-
tions can be calculated by solving the system

~x:(t) ei(X*,U*)

d
dt(ul1.)*(t) = </>11.(x*,u*)

of ordinary differential equations in t with the initial conditions

xi(O) Xi

(ul1.)*(O) ul1..

These point transformations map solutions u( x) of the system (1) into new
solutions u*(x*). This way one can construct new solutions from known ones
by only knowing the symmetry transformations.

Another way for finding new classes of solutions with this method is to
determine invariant solutions corresponding to an infinitesimal generator X.
Functions u( x) which are invariant under the action of the generator X have
to satisfy the characteristic equations or invariant surface condition

n

Xul1. = ¢>11.(x,u) - :Lei(x,u)uf = O.
i=1



Additionally u( x) must solve the original system (1). Furthermore the sym-
metry analysis due to Lie delivers a criterion to decide whether or not the
system 6. can be linearized by an invertible point transformation [4, 16].

A generalisation of Lie's method was proposed by Bluman and Cole [10]
which they called the "non classical method of symmetry reduction" or in
short the "nonclasscial method". With this method new classes of solutions
not obtainable with Lie's method can be derived [11, 12]. When new classes
of solutions are found one speaks of non "classical symmetries but no new
symmetry transformations are found. The non classical method applies Lie's
method to the extended system

n

<PJ1- - I:eiUr
i=l

which has to be solved by the invariant solutions of the generator X.
The procedure to determine point symmetries can be generalized to dis-

cover symmetries which are generated by local symmetries. Local symmetries
are characterized by the infinitesimal generator

m 8
X = I: 'f/J1-(x, u(p)) 8uJ1-

J.l=1

which can depend on derivatives up to a fixed order p and has not to be
linear in the first derivatives of u. In the formulation of (6) the invariance
criterion is the same expression just the form of'f/ has changed.

Up to now the symmetries of 6. are generated by local or point transfor-
mations of the dependent and independent variables. These transformations
act on the (x, u(p))-space, respectively on the (x, u)-space. Symmetries with
total new properties can be produced by nonlocal transformations [4, 14].
Nonlocal transformations can't be expressed in the independent and depen-
dent variables x and u and the derivatives of the dependent variables u(p).
One has to introduce new variables v which are related to the old variables
u through equations which include the original system as a consequence.

Provided one PDE 6.11 can be expressed as a conservation law there ex-
ists a systematic way for finding a class of nonlocal symmetries, so-called
potential symmetries, by introducing new potential variables corresponding
to a potential system. In the next section, we will show an algorithm to
determine potential systems and define potential symmetries.



3 Potential symmetries
If we want to describe nonlocal symmetries it is convenient to introduce
new variables v(x) which are related to the old variables u(x) by additional
equations. The original system has to be derivable form these equations. In
other words, if (u( x), v( x)) satisfy the extended equations u( x) has also to
be a solution of the system ~ = O. An auxiliary system with new variables
can be introduced if at least one PDE of ~ can be written as a conservations
law.

Suppose one PDE of ~, without loss of generality ~m = 0, can be ex-
pressed as a conservation law [14J

nL D;Ji(x, u(l<-I)) = O.
i=1

~",(x, u(l<)) = 0
nL D;Ji(x, u(k-I)) O.

i=1

(13)

(14)

According to the form of (14) it is possible to introduce n - 1 new auxil-
iary variables v (x) = (VI (x), ... , V n( X )) to form a new "auxiliary system" or
potential system \II(x, u(kl, v(I))

P(x, u(k-I)) V;2 (15)

t(x, u(k-I)) (_1)1 [Vf+1 + vf+il ' 1 < 1 < n (16)
r(x,u(k-I)) (_1)n-1 v~=i (17)

~",(x, u(k)) = 0, V = 1, ... , m - 1. (18)

The systems ~ and \II are closely related to each other. A symmetry of the
system \II is a symmetry of the original system ~ and vice versa. But the
same symmetry could have a different character in the two systems. A point
symmetry of \II could yield a nonlocal symmetry transformation in ~. Such
symmetries of \II are called potential symmetries of ~ [4, 14, 15J.

A point symmetry of \II with the infinitesimal generator

XIIi = ~ [<pe>(x,u,v) - Eei(X,u,V)Ur] aUQ



+% [xp(x,u,v) - t,~;(x,u,v)vf] &.,

is a potential symmetry of ~ if </J(x,u,v) and ~(x,u,v) depend essentially
on the new auxiliary variables v(x). Otherwise XIlf projects onto a point
symmetry of ~ corresponding to a generator

The main problem in determining potential symmetries is to find useful
potential systems which allow potential symmetries. But there is not only the
possibility to write a PDE of the system (1) ~v = 2:£=1 Ddi in a conserved
form. Additionally some PDEs can be multiplied by factors to obtain a
conservation law [14, 15].

Suppose there exists a set of factors

m nL AV(x, u))~v = L:Ddi(x, u(k)).
v=1 i=1

to obtain an auxiliary system. But the factors A have to be chosen carefully,
because solutions of ~ = 0 and solutions of the system

~V

N'(X, u)

both satisfy the modified system ~. So not all possible integrating factors A
are useful. If the equation



has no solutions for any u the system ~ yields a useful potential system.
In this case it is assured that the point symmetries of the corresponding
potential system are symmetries of the original system, too.

A necessary condition that the factors ,\ have to satisfy opens a systematic
way for finding integrating factors ,\ [3, 15]. This determining criterion for
the integrating factors can be expressed in the form

D;;,\IC1=o = o.
The adjoint Frechet derivative D~ is the differential operator which is

defined by the relation

r V D C1 W dx = r W D;; V dxin in
for any domain n c IRn and any smooth functions V(x) = (V1(x), ... , vm(x)),
W(x) = (Wl(X), ... , wm(x)) with compact support in n [3, 14]. In partic-
ular the expression

VDC1 W - WD;; V

has to be a divergence expression. It is easy to show - integration by parts
-- that the formula

(D;;L~= L(-D)J aa~:'
J UJ

is a matrix representation of the adjoint Frechet derivative D~.
The procedure to find potential systems can also be applied to a already

known potential system. By applying this method step by step it is possi-
ble to construct a whole chain of potential systems. Finally the symmetry
analysis can be applied to all those systems.

The solutions of the determining condition (22) for the integrating factors
could obtain free functions that have to satisfy a PDE or a system of PDEs.
These factors are of no use to find new potential systems. They indicate that
the original system can be linearized. To use this information given by (22)
an algorithm was proposed by BIuman [4, 16] to linearize a scalar PDE or a
system of PDEs by an invertible mapping.



With the aid of potential symmetries new solutions of the original system
.6. can be found which cannot be derived from local symmetries. The new
solutions can be determined by calculating the finite transformations corre-
sponding to a potential symmetry to construct new solutions from old ones
or by computing the invariant solution.

Another useful possibility of potential systems is the possibility of lin-
earisation by non-invertible mappings [17]. Sometimes the original system
cannot be linearized by an invertible mapping. In contrast to that result a
potential system could own an invertible mapping which leads to a lineari-
sation of the potential system.

To see how the different methods work let us discuss the symmetry anal-
ysis of a class of nonlinear telegraph equations. For a particular equation the
obtained solutions are discussed in detail.

4 Potential symmetries of nonlinear telegraph
equations

A general class of nonlinear telegraph equations [18] are described by the
system

(25)
(26)

where d( u) and e( u) are material functions. These equations also govern
electro magnetic shock waves [19] as well a pressure waves in a relaxing gas.
In the case of electro magnetic shock waves the physical model is described
by the Maxwell equations in one spatial direction x

(27)
(28)

for the electric field E and the magnetic field H with the magnetic perme-
abilty It and the dielectric permittivity f.. The model with



Uxx + (~) = 0 (29)un tt

where u either is the electric field E or the magnetic field H. The cases with
n = ±1 are excluded because the equation with n = -1 is the well known
wave equation and n = 1 is discussed in detail in section 5

The symmetry analysis of equation (29) due to Lie delivers a four dimen-
sional symmetry group with the infinitesimals

C2 + C3X

1
Cl + (C3 - "2c4(n + l))t

(30)

(31)

(32)

The infinitesimals ~1' 6 and </>1are related to x, t and u and generate space
and time translations. Additionally there exist a scaling invariant solution
and a special separation ansatz. The symmetry group shows that it is not
possible to find an invertible mapping to linearize the equation (29).

A systematic determination of the integrating factors >. by using the de-
termining condition (22) yields the four different factors

For each integrating factor there exists a related potential system. We ex-
amined all these systems but only the system related to >'1 = 1 is useful for
calculating potential symmetries. The corresponding potential system reads

vi - Ux = 0
1 Ut

-Vx + un+1 = O.

(34)
(35)

The finite dimensional symmetry group of the system (34) and (35) has
got beside the point symmetries that project onto point symmetries of the
original equation (29) a potential symmetry generated by the infinitesimals

2tu 2nxv1

6 = n-l+l-n



6
2x 2tv1

(37)+--(n - l)un . n - 1

<PI
4v1u

(38)1-n
4 I-n

<P2 U ( 1)2 (39)(l-n)2+ v .

2tu 2nxv1

- --+--n-1 1-n
2x 2tv1

---+--
(n - l)un n - 1
4vIu
1-n
4u1

-
n (1)2

(1 _ n)2 + v

which serves to compute the finite symmetry transformation cannot be de-
coupled. So it is also not possible the derive the invariant solution in the
most general case.

However in addition to these discrete symmetries there exists an infinite
dimensional potential symmetry which is represented by the infinitesimals

6 - P(u,vl)

6 P(u,v1
)

<PI 0
<P2 O.

(40)
(41)
(42)
(43)

The free functions jl(u,vl) and PCu,v1) have to solve a linear system con-
sisting of two equations with analytical coefficients

(44)
(45)

This continuous potential symmetry indicates that it is possible to linearize
the potential system (34) and (35) by a hodograph transformation The linear



target system is yet given by the equations (44) and (45). We choose as new
independent variables

According to the transformation (46) and (47) and the equations (44) and
(45) the linearized system reads

(48)
(49)

It can be solved by various, well known methods like separation in the in-
dependent variables or Laplace transformation etc. A detailed discussion of
such solutions for the special case n = 1 is given in section 5 ,

The equations (48) and (49) are equivalent to a scalar PDE if we introduce
a potential representation

w1
(zl, Z2) = gZ2 and W

2
(Z2' Z2) = gZl'

2
--(C2 + 2C3Z2)Zl
1-n

2 4 1 n
C4 + C2Z2 + C3Z2 + (1 _ n)2C3Z1-

l+n
Clg + --C3Z2g

1-n

where 6, 6 and 1>1 are related to the variables Zl, Z2 and 9 respectively. This
representation of the symmetries of equation (50) is a common way to find
particular solutions. The invariant solution related to the subgroup C2 = 1
and c, = 0 Vi =f 2 with the infinitesimals

26 = --Zl,
1-n



J( 3-n

g(ZI, Z2) = k1 + k2 ds (4 - s2(1 - n)2) 2(n-1)

for g(Zl, Z2) with the similarity variable given by
n-1

(= Z2Z~,

Thus the solutions of the potential system (34) and (35) can be given by the
explicit expressions

n-1 3-n
W1(Zl, Z2) k2z;r (4 - z~z~-l(l - n)2) 2(n-l)

1 n-3 ( 3-n
W2(Zl' Z2) k2"2(n - 1)z2z;r 4 - z~z~-l(l - n)2) 2(n-1) .

But it is not possible to execute explicitly the back transformations which is
defined by the equations

3-n
X k21.ln:;1 (4- (v1)21.ln-1(1_n)2)2(n-1)

1 3-n
t k2"2(n __ 1)v1un:;3 (4 - (v1)2un-l(1_ n)2)2(n-1).

The other non trivial invariant solution corresponding to C3 cannot be de-
termined because the differential equations connected with the infinitesimals
cannot be decoupled (see section 5). The group constant C4 generates trans-
lation in Z2 and Cl reflects the homogeneity of equation (50).

In the following section, we want to examine a special case of equation (29)
with n = 1 This situation was excluded in the previous calculations because
the group classification shows a singular behaviour for this value of n. This
special case describes a physical model of great interest in strong external
magnetic fields. There are also further solutions which are not derived in
this section.

5 Symmetry analysis for a particular non-
linear telegraph equation

1.lxx + (~) = 0
U tt



represents the physical model of the Maxwell equations (27) and (28) with
[19]

E(E) = E1 and fL(H) = ~~.
The magnetic permeabilty fL and the dielectric permittivity E describe a fer-
romagnet in a strong external magnetic field.

The point symmetry group of equation (51) is represented by the infinites-
imals

C3 + C4X

CI + C2t

(C4 - C2)U

(52)
(53)
(54)

generating space and time translations as well as a scaling invariant solution
and a particular separation ansatz in the form

x
u(x,t) = k k

I + 2t
where ki and k2 are integration constants. The symmetry group contains no
infinite dimensional subgroup, so there is no possibility to linearize equation
(51) by an invertible mapping.

The symmetry analysis with the non classical method delivers another
interesting case with infinitesimals

~I = u(x,t)
~2 1
<PI o.

(55)
(56)
(57)

where again el, 6 and <PI are related to the variables x, t and u. Here the
remarkable fact should be emphasized that the solutions of the invariant
surface condition

also solve the nonlinear telegraph equations (51). So the problem of solving
the PDE (51) is simplified to solve a quasi linear PDE of first order. PDEs
of this type can be solved by the method of characteristics. The solution,
u(x, t) of (58) obtained by this method is defined by the implicit equation



for any arbitrary G(u). Of course equation (59) cannot be solved explicitly
for arbitrary G(u). Solutions u(x,t) in an explicit form can be obtained if
the defining equation (59) can be expressed as a polynomial in u of maximal
degree 4, i.e.

1 1 3G(u) = bo + b1u + b2ufJ with (3-- -2' 2' 2'
For example the solution of the equation

x = bo + b1u + tu + b2u2

- a polynomial of degree 2 -- is given by the expression

u(x,t) = 2~2 (-b1 - t ± )(b1 + t)2 - 4b2(bo - x)).

The result of a systematic determination of potential systems for equation
(51) is the same as for the general equation (29) with un and given in (33).
The potential system derived from the factors "\2, ..\3 and ..\4 and further
potential systems of these systems do not lead to potential symmetries. As
in the previous case potential symmetries exist for the system

(60)

(61)

which belongs to the factor ..\1 = 1.
The symmetry analysis of the system (60) and (61) shows beyond the

symmetries that project onto the point symmetries of the original equation
a potential symmetry generated by the infinitesimals

el tu - XVI (62)
X

6 - + tv1 (63)
U

cPl -2uv1 (64)
cP2 -2log( u). (65)



Again, in this case it is not possible to calculate explicitly the finite trans-
formations of this infinitesimal transformation. The last two equations (68)
and (69) of the corresponding system of ODEs

d
tu - XVIdEX(E) (66)

d x
dEt(E) - + tvl (67)

u
d

-2uvldE U( E) -- (68)

d
dE V

l
( E) -2log(u). (69)

can be decoupled and a solution can be given explicitly. But the solutions of
the remaining equations (66) and (67) cannot be computed. These problems
can occur at the calculations of potential symmetries because of the greater
number of variables.

The symmetry group of (51) contains also another infinite dimensional
subgroup with the infinitesimals

el = fl(U,VI)

6 = f2(U,VI)
1>1 = 0

1>2 = 0

representing a potential symmetry which leads directly to a linearisation of
(51) by a non-invertible mapping. The free functions r(,u, VI) and j2(u, VI)
have to satisfy the linear system

f~ -/;1
- f;1 + u2 f;.

It should be noted that the nonlinear telegraph equation (51) could not be
linearized by an invertible mapping. But the symmetry (70 - 73) indicates
that it is possible to linearize the potential system (60) and (61) by an in-
vertible point transformation. The equations (74) and (75) yet deliver the
target system. So the original equation (51) is linearized indirectly since the
solutions of (60) and (61) (u, vI) are also solutions of the equation (51) when
V 1 is ignored.

(70)
(71)
(72)
(73)

(74)
(75)



Following the method proposed by Bluman [4] the potential system (60)
and (61) is linearized by the hodograph transformations - see the former
transformations (46) and (47)

with the new independent variables ZI, Z2 and the new dependent variables
WI(Zl' Z2) and w2(zl, Z2)' The transformed equations

(77)
(78)

are a linear homogeneous system of PDEs. There are various techniques to
solve the equations (77) and (78). A simple way to solve this system is to
introduce a "potential function" j(Zl, Z2) which has to solve the scalar PDE

WI = jZ2 and w2 = jZl .

A common way to solve the PDE (79) is to make a separation in the inde-
pendent variables. With the ansatz for j(Zl, Z2) in the form

one gets G(Z2) as an expression with exponential functions

G(Z2) = aeVkZ2 + be-Vkz2

F(Zl) and G(Z2) contain an arbitrary parameter k and the integration con-
stants a, b, c and d. With the aid of the function j(ZI, Z2) the solutions

WI J dkVk(a(k)eVkZ2 - b(k)e-Vkz2)(c(k)zi1 + d(k)z'F) (80)

w2 J dk(a(k)eVkZ2 + b(k)e-VkZ2)('IC(k)z~'Y2 +'2d(k)z~'Yl) (81)



of the potential system (60) and (61) where the exponents /1 and /2 are given
by

1--- 1~-
/1 = "2 + vI + 4k and /2 = "2 - v1+ 4k

are a linear superposition of particular solutions with a continuous parameter
k. The range of the parameter k and the choice of the coefficients follow
from given boundary and initial values. After the back transformation every
solution u( x, t) is a solution of the original nonlinear telegraph equation (51).

For the special choice of the parameters

a(k) = b(k) = c(k) = 8 (k -~) and d(k) = a

with 8(k - ~) denoting Dirac's 8-function it is possible to execute the back
transformation explicitly. The equations (80) and (81) reduce for this case

sin (~) Vii

cos (~2) ~.
Applying the transformation rules (76) and eliminating vt one gets the defin-
ing equation

x2 - U + t2u2 = a
for u(x, t). The solution u(x, t)

1 1u(x t) = - ± -",!l - 4t2x2
, 2t2 2t2 '

which is easily obtained cannot be derived by other methods presented in
the previous sections. This solution of the nonlinear telegraph equation (51)
is plotted in figure 1 and figure 2 for the branch with the plus sign.

Another way to treat PDE (79) is the symmetry analysis due to Lie. The
result of the analysis is a four dimensional symmetry group represented by
the infinitesimals

6 =
6
<PI =

C4Zt + 2C2ZIZ2

C3 + 2C2 log(ZI)

ctf + C2z2! + g(ZI, Zt).

(83)
(84)
(85)



The free function g(Zl, Z2) reflects the linearity and has to satisfy the original
equation (79). The group constant Cl is connected with the homogeneity
of equation (79) and C3 generates translations in the time t. These group
constants are of no use in finding invariant solutions. The invariant solution
corresponding to the infinitesimal generator

is a special form of the separation ansatz used in the discussion above. Only
the invariant solution of the generator

created by setting C2 to unity and the rest of the group constants to zero,
leads to a new class of solutions. The invariant surface condition

The solutions of equations (77) and (78) read in terms of this expression

1 vIZlZ2
W (Zl, Z2) = --======= x. 2';z~ - (log(zl))2



( -kIJI (~jzi - (lOg(ZI))2) - k2YI (~jzi - (lOg(ZI)2)) (87)

2~ (klJo (~jzi - (lOg(ZI))2) + k2Yo (~jz? - (log(zI)F))

VZllog(zl)
+-=====x2j z~ - (lOg(ZI))2

(kIJI (~Jz~ - (log(zI))2) + k2YI (~jz~ - (lOg(ZI))2)) (88)

which we obtained by differentiating equation (86). The solutions of the
potential system (60) and (61) which can be obtained by substituting back
the transformation rules (76) are defined the implicit equations

y'UVI

X
2V(vI)2 - (log(u))2

(-k1JI (~J(Vl)2 - (log(u))2) - k2YI (~J(VI)2 - (log(u)2)) (89)

2~ (kIJO (~j( VI)2 - (log(U))2) + k2 Yo (~J(VI)2 - (log(U ))2) )

y'Ulog(u)
+-======x

2j(VI)2 - (log(u))2

(kIJI (~j(VI)2 - (log(u))2) + k2YI (~j(VI)2 - (log(u))2)). (90)

It is obvious that u(x, t) and vl(x, t) cannot be given in explicit form by
these equations. In addition to Lie point symmetries of (79) the non classical
method yields no further results.

In the case of the nonlinear telegraph equation (51) it is interesting to
look for non classical symmetries of the potential system. The non classical
method delivers no new solutions for the infinitesimals unless when <PI and
<P2 are zero. Then the determining equations are satisfied identically for
arbitrary ~I(X, t, U, VI). Here u(x, t) and vl(x, t) have to solve the invariant
surface condition

(91)
(92)
(93)



In addition to the invariant surface condition (u, vl) have to solve the po-
tential system (60) and (61). The only solutions of this extended system

u(x, t) = kl and vl(x, t) = k2.

for arbitrary el. So u and vl are trivial solutions and linear dependent. Hence
the non classical method for the potential system is of no use to discover new
solutions for the nonlinear telegraph equation (51).

In this article we have demonstrated the combination of Lie point, non clas-
sical and potential symmetries which allow us to discover new solutions. Our
main interest was concentrated on potential symmetries which deliver new
symmetries of nonlocal character. With the aid of potential symmetries new
classes of solutions are also found for a class of nonlinear telegraph equations
arising in the field of wave propagation, e.g. at electro magnetic shock waves.

Potential systems are very useful to linearize PDEs by an non invertible
mapping. This topic is exemplified at equations treated in this article. The
linearisation of the nonlinear telegraph equations listed in section 4 are de-
termined and new solutions calculated with this transformation are pointed
out. For the special nonlinear telegraph equation examined in section 5 a
broad class of new solutions is given which are derived by the linearisation.
Explicit new solutions are calculated, too.

Additionally for the equation of section 5 a remarkable non classical sym-
metry is presented. Up to now we do not know that the invariant surface
condition for the corresponding infinitesimals satisfies the original equation
identically. So the invariant solution with respect to the infinitesimals con-
tains an arbitrary function and covers a wide class of special solutions.

In this context the relation of non classical symmetries of the potential
system and the non classical symmetries of the original system is discussed.
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figure 1: Three dimesional plot for the solution n{cr, t) (82) of the nonlinear telegraph
equation (,51).



figure 2: Solution u(x, t) (82) of equation (51) plotted as function of x for different
times t.


