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Abstract

A finite element model is presented for investigating dynamic behavior of drillstrings
used m oil and gas wells. A Timoshenko beam element is used to model axial and
transverse vibrations. The effect of axial load, gravity, the constraints due to stabilizers
are considered. The results show that a small amount of disorder in the configuration as
well as the gravity cause strong mode localization which may be catastrophic. The
implications for design and operation i the presence of mode localization is also
discussed.

1 Introduction

The Bottom Hole Assemblies (BHA), the lower part of drillstrings used for the
drilling of oil and gas wells are subject to severe vibrations that are often blamed for
faitures. There is now sufficient evidence that most drillstring failures are primarily
caused by fatigue induced by vibrations [1]. In addition to the component failures, in
most cases drillstring vibrations represent a loss or waste of drilling energy. Therefore,
severe vibrations may result in deviations from optimal drilling conditions [2].

Though there has been considerable research in the modeling and analysis of drillstring
dynamics, a comprehensive understanding of all the vibration pheromena mvolved is
still lacking. Furthermore, the complex and varying nature of the boundary conditions,
operational characteristics and parameters undermine the utility of available models with
respect to their predictive capabilities. For this reason the use of experimental drillstring
measurement tools are currently the only reliable methods for improving performance
and solving real-time drilling problems [3]. Theoretical studies on drillstring dynamics are
still important however, to improve the understanding of the various phenomena and
thus provide better interpretation of experimental data.

Finite Element Method (FEM) has long been used for both static and dynamic
analysis of drillstrings. Of note is the GEODYN program developed in Sandia National
Laboratories [4]. This program is designed to simulate the three-dimensional, transient
dynamic response of a bit-drillstring system interacting with a geological formation. Kalsi
et al., [5] used a one dimensional FEM model for transient dynamic analysis of the
drillstring under jarring operations. Mitchell and Allen [6] used MARC general purpose
FEM code to investigate axial, lateral and torsional modes of vibration. They concluded
that lateral vibration was the dominant cause of reported failures.

The present work is an attempt to examme the drillstring dynamics as a whole
structure. An FEM model of the entire BHA is developed. The natural frequencies as
well as the mode shapes are investigated through modal analysis. It is found that a
phenomenon known as “mode localization” may occur in certain drillstring
configurations, which may explain some drillstring failures .
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2 FEM Model Description

In this study only planar vibrations are considered. A two-dimensional Timoshenko
beam element, including shear and rotary inertia effects is used to discretize the
drillstring. The effect of axial load, as well as parametric coupling between the axial and
transverse vibrations is included by considering geometric stiffening effect. The resulting
element stiffness and mass matrices are given in the Appendix.
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Fig. 1 A Sketch of the Bottom Hole Assembly.

A field case reported in Reference [6] has been selected and the whole bottomhole
assembly shown in Fig. 1 is modeled. There are six steel drill collars of two different
cross sections, supported by seven stabilizers. Stabilizers are modeled as permanent point
contacts which constrain the transverse motion, but not the axial motion. The effect of
finite stabilizer contact is modeled as effective torsional springs. Certainly, this is an
approximation and can only be justified for certain cases (ie., fully gauged stabilizers).
The imner and outer diameters for one set of drill collars are 0.2m and 0.073m
respectively whereas for the other set, they are 0.23m and 0.073m respectively. The

torsional springs located at the stabilizers have a nominal value of 1x 10'° Nmjrad . For
the axial vibrations, the BHA is assumed to be fixed at the bit and free at the drilipipe
interface. This assumption can be justified by noting that the drillpipe has relatively
smaller cross sectional area and has very little effect on the dynamics of BHA. The well
is assumed to be perfectly vertical and gravity load is taken into account as a body force.
The amount of Weight-on-Bit (WOB), the axial force at the bit, is adjusted by adding a
constant force at the bit (see Fig. 1).

A standard assembly procedure by applying the appropriate compatibility conditions
and boundary conditions yields the following discrete equations of motion:

Mi+Kx=F (1)
where M and K are the global mass and stiffness matrices, respectively; x is the vector of
nodal degrees of freedoms, and F is the global load vector. The corresponding eigenvalue
problem can be written as

Ku=0*Mu (2)

where u is the mode shape associated with natural frequency o© .
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Fig. 2 Normal Mode Shapes With Gravity Force and without disorder, (modes 4,5,6,14,15).

3 Results and Discussion

Modal analysis is carried out for the model described above. A constant axial force of
170 kN is applied at the bit in addition to the distributed gravity force. The first 25 modes
are extracted and classified as either axial or transverse mode. Table 1 gives the first ten

natural frequencies. Some of the transverse mode shapes relevant for the BHA are given
m Fig 2.

Mode | 1 2 3 4 5 6 7 8 9 10

Casel | 1.26 | 1.30 | 135|299 | 3.02|3.05|344 | 3.50| 3.56 | 6.72
Case2 | 1.37 | 1.37 | 1.37 | 3.00 | 3.00 | 3.00 | 3.60 | 3.60 | 3.60 | 6.90
Case3 | 1.36 | 1.37 | 1.37 1295|298 |3.02|3.59]| 3.59 | 3.60 | 6.89

Table 1. First Ten Natural Frequencies (z).

From the modal analysis it can be concluded that the whole BHA has to be modeled
for an accurate prediction of transverse mode shapes and frequencies since the mode
shapes are distributed over few segments. This is in contrast with some of the earlier
studies in bending vibrations where only the segment between the bit and the first
stabilizer is considered (this can only be justified if the stabilizer is assumed to constrain
rotation of the section completely).

This drillstring configuration is demonstrating a strong mode localization. This can be
verified by observing the mode shapes which show typical localized behavior (see Fig.
2). The effect of disorder and imperfect boundary conditions should also be examined
from this viewpoint. It is believed that the primary reason for this mode localization is
the gravity force which acts as a disorder. In order to test this hypothesis, the same
system is analyzed without gravity. For a fair comparison the drillstring is loaded by
constant axial loads to result in the same amount of WOB. The resulting mode shapes
are not localized as shown i Fig. 3. It is therefore concluded that the gravity is the mamn
culprit for mode localization. Fig. 4 shows the mode shapes obtained by introducing a
small disorder by perturbing the span lengths by only 0.6 %. In this case the gravity is
not mcluded. As is seen the effect of this disorder is to cause a very strong mode
localization.
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Fig. 3 Normal Mode Shapes without Gravity Force and without disorder, (Modes 4,5,6,14,15).

The mode shapes shown are also useful in identifying the critical locations for harmonic
analysis. Clearly, some of the modes will not be observed well at certamn locations due to
the low amplitudes of the mode shapes at these locations. These mode shapes should also
be considered for the placement of downhole measurement equipment.

Fig. 4 Normal Mode Shapes with Disorder and without gravity force, (Modes 4,5,6,14,15).

4 Conclusions

A two dimensional finite element analysis has been carried out to investigate the
dynamics of an entire BHA for a drillstring used for drilling oil or gas wells. The model
includes the effect of axial load as well as gravity. The stabilizers are modeled as
transverse and torsional springs. It has been found that most of the mode shapes are
strongly localized in small geometric regions. This may explain some of the failures in
these systems. Furthermore, this phenomenon should be considered and special attention
should be paid for the placement of transducers used to measure vibrations.
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Appendix

Element stiffness matrix is given as K = K; + K, where K, is the usual elastic
stiffness matrix and K, is the geometric stiffness matrix associated with the axial load.

o~ -

iy 0 0 e 0 0
L L
12E1 6E] o . 12E 6El
P(1+®) L*(1+9) P(+o) [*(1+90)
EI(4+®) 6l EI(2-®)
L(1+®) ’(1+@) L(1+®)
e 0 0
L
[K]- 12E! ___GEI
L(1+ ) L*(1+®)
EI(4+ @)
i L(1+®) |

162



where A4 is the cross-sectional area, £ is Young’s Modulus, L is the element length, 7 is

2
GA I 4 \L

where G is the shear modulus, y is the Poission’s ratio. 4, = A is the shear area with
8
F, being the shear deflection constant and r is the radius of gyration.

the area moment of inertia. The shear factor is given by @ =

For an axial load of F, the geometric stiffness matrix is given as

0 0 o 0 o 0
6F/SL F/10 0 —6F/5L F/10
2FL/15 0 -F/10 —-FL/30
%]
* 0 0 0
6F /5L —F/10
] 2FL /15

The element mass matrix is given by :

= 0 0 ! 0 0
3 6
136/ 1L, I 9 6l 13L I
—+ + 0 —- - +
35 5472 210 104L 70 5412 420 104L
L2 BL I o |
105 154 420 104L 140 304
PAL
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3
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where p is the material density.



