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Computer Aided Constrained Optimisation of Cutting Conditions
in Drilling Operations on a CNC Lathe by Using

Geometric Programming

A. ihsan SONMEZ, Adil BAYKASOGLU, i. Hliseyin FiLiz

This paper discusses the use of the geometric programming method to determine the
optimum values of cutting speed and feed rate which yield minimum cost in a drilling operation
that is performed on a CNC lathe, During the formulation of the problem a number of
constraints are considered.

The determination of economically optimal cutting conditions, i.e. cutting speed and
feed rate, is an essential step in computer aided process planning activities.

A survey of the literature on the optimisation of cutting conditions indicates that a few
number of researchers have studied the optimisation of cutting conditions in drilling operations
In the cases especially where HSS drills are used, drilling operation may have considerable
influence on the machining time and therefore optimisation of cutting conditions might be
necessary.

Ermer and Shah [1] considered the problem of optimising cutting conditions in drilling.
They used both minimum cost and maximum production rate as optimisation criteria.

Arsecularatne [2] and Filiz, Sonmez, Baykasoglu, Dereli [3] studied the constrained
optimisation of cutting conditions in drilling by using minimum cost as optimisation
criteria.They used the torque available from machine too~ drill buckling, drill strength, axial-
circumferential slips in chuck as the constraints.

In the above mentioned analyses, cost per operation is expressed in terms of cutting
speed and feed rate. One of these variables is found by using partial differentiation of the
expression with respect to the variable of concern and the other variable is found as the value
which satisfYthe above mentioned constraints. In these approaches both independent variables
could not be treated simultaneously.

In this study, the constrained optimisation of cutting conditions on a CNC drilling
operation is successfully and easily treated by the application of a non-linear programming
technique, namely, Geometric Programming (GP). In the solution of constrained GP problem
Lagrange Multipliers method is used as an additional tool. Minimum cost is used as the
objective function and the following restrictions are considered in this work; Maximum
machine torque, Limiting torque for the dria Circumferential slip in the chuck, Axial slip in the
chuck, Drill buckling, Maximum and minimum speeds available from machine too~ Maximum
and minimum feed rates available from machine tool.

A computer program is written in QBASIC and implemented on an ffiM compatible
computer for automating the calculations in the optimisation procedure.



In Geometric Programming the objective function is written in the following form:
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where qo: number of terms in the objective function, Coj: coefficients of the objective function,
tk:denotes variables, r: number of variables, p: number of constraint functions, qi: number of
terms in the i'th constraint function.

Duffin, Zener and Peterson [4] showed that the dual of the above stated problem
(primal programme) is given by;
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where u(o) is the dual function and Oij, denotes dual vectors.
To solve the problem, the optimum value of the dual vectors 0\ ,which make the dual

objective function maximum, should be found from dual constraint equations.
The optimum value of the original objective function g·o(t) is obtained from the dual

program after finding the optimum values of the dual vector o·ij. According to the definition of
the geometric programming, O·ij are the weight of the terms in the primal objective function,
I.e.

r
C 3oJ"I.<_ ••oj II !Ie - 0 oj.g o(t)

k=1

There are qo equations and r variables. The variables !Ieare then found by solving these
equations simultaneously.

If (no. of. equations = r +1), then (s-r-l) is termed the degree of difficulty of the
problem, where s is the number of terms in the objective and constraint functions. This
represents the number by which the independent variables exceed the number of equations in
the system of linear simultaneous equations given by normality and orthogonality conditions.

The basic model describing the cost of a drilling operation, as given by many authors, is
expressed as follows;

CT = XTm + (XTd + Y)(Tm / T) 7



where X is machining cost rate (cost/min), Y: tool cost per cutting edge (in carbide inserts) or
drill depreciation cost plus drill resharpening cost (in HSS tools), Tm: machining time (min), Td:
tool change time (min), T: tool life (min).

Machining time for a drilling operation can be written as;
Tm = 1tDL/(lOOOYf) 8

where D is drill diameter (mm), L: length of cut (mm), f: feed rate (mm/rev), V: cutting speed
(m/min).

Taylor's expanded tool life equation for drills has the following form[5];
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where Cy,m,xv,yvare constants.
The substitution of tool life (T) and machining time (Tm)expressions into equation (7)
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For convenience, define; n = m.xv, A = (~t ,z = m Yv
Then the cost equation can be written as;
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This equation is the objective function which will be optimised according to the minimum cost
criterion.

There are several constraints which effect the cutting conditions in a drilling operation.
The source of these constraints may be machine tool, cutting tool and workpiece specifications.
One must keep in mind that the larger the number of constraints, the harder the optimisation
problem is to solve.

Thrust load (Fy) and torque (M) in drilling operations are given by Arshinov et. al. [5]
as follows:

Fy = 9.81Cp D"" fYp (N)
M = 9.81.10-3CmDXm fYm (N.m.)

where ,Cm , Xm , Ym, Cp ,Xp ,yp are constants for a given tool/workpiece pair.

4.2. Constraints
Following constraints are considered in this work;

1)Maximum machine torque : Maximum torque which can be provided by a machine is;

M1 = 60Pmax /(1tNbrcak1) 14
So; M1 ~ M (Constraint 1) 15
where, Pmaxis maximum power available from machine (W), Nbrcak1 is the break speed of the
motor after which tlle power becomes constant (maximum) (rpm).



2) Limiting Torque of The Drill: Limiting torque that the drill can withstand is calculated by
the formula;

where, De is the equivalent diameter for the drill which is equal to 0.7D (mm), fsl is factor of
safety , and 't is the shear strength of the drill shank. material (MPa).
So; M2 ~ M (Constraint 2) 17

3) Drill Buckling : The maximum load to avoid drill buckling can be calculated by using the
formula;

where; E is the modulus of elasticity of the drill material (MPa), fs2 is factor of safety.
So; Fal ~ Fy (Constraint 3) 19

4) Axial Slip in Chuck: The maximum allowable thrust to avoid axial slip in the chuck can be
calculated by using the expression;

Fa2 = ~ [ Fco + L (mjrj )(Wmin)2] 20
where, ,u a is coefficient of friction of jaw in axial direction, Fco is clamping force at zero speed
(N), mj is mass of chuck jaws (kg.), rj is radial distance of jaws (mm.), Wmin is minimum spindle
speed (rad/sec.).
So; Fa2 ~ Fy (Constraint 4) 21

5) Circumferential Slip in The Chuck: To avoid circumferenctial slip in the chuck, the torque
developed in the cutting operation must be less than the frictional torque (M3) in the chuck
which can be calculated by using the formula;

M3= ~g (Fco+ L(lIljrj)(wmin)2] 22
where, rll is component gripped radius (mm), ~c is coefficient of friction of jaw in the direction
of spindle rotation

6) Maximum-Minimum Rotational Speeds of the Machine Tool: The rotational speed can be
calculated by using the following equation;

f ~ tnax (Constraint 7)
Where; fmax is maximum feed rate of the machine.



The objective function and constraints functions" can be written m the geometric
programming formats as explained in section 2;
Objective function
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where; tl denotes cutting speed V and t2demotes feed rate f and
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Constraint 7; C7l tl ~n t2~12 ::;;1 where; C7l= 1/tnax, a1ll = 0, am = 1

The primal objective function and the constraint functions have been developed in the
previous sections. It is seen that the objective function has two terms and there are seven
constraint functions. All of the constraint functions have single terms. So the dual objective
function turns out to be;



where; 001and &2 are the dual variables of the objective function.
The dual variables are subjected to the linear constraints. According to the normality

condition of the Geometric Programming, first dual constraint function is given by;
001+ 002=1 37

According to orthogonality condition, the other constraint functions are;
aOll001+a021002+alll 01l+a211OzI+a311031+a411041+a5ll051+11611061+a711071= 0 38
a012&1+3022002+all2 01l+a212021+a312031+a412041+a5120~il+1l612061+a712071= 0 39

and the non-negative constraints are;
001~O, Oro~O, 011~O, 021~O, 031~O, 041~O, 051~O, 061~O, ~1 ~O 40
The dual objective function U(O) has to be maximised by using the dual constraint

functions. The maximum point obtained from dual objective function is the minimum value of
the original objective function. However, the degree of difficulty of the problem is six,
therefore an additional method is necessary to solve the problem. Following steps are taken for
solving the problem as suggested by Beightler [6] and Nisli [7].

Firstly, the natural logarithm of the dual objective function is taken;
F'(o) = lnU(o) 41
F'(o) = 00l(lnC01-ln001)+ 00z(lnC02-ln&2)+ OlllnCII+ OzllnC21+031lnC31+041lnC41

+ 051lnC51+061lnC61+~llnC71 42
Then, this non-linear optimisation problem can be solved by using the "Generalised Lagrange
Multipliers" method. The general formulation of this method is as follows;

F(o,A.) =F'(o)-L A.jGj(0)
j=l

where, Gj (0) is the constraint function and N is the number of constraints functions.
The dual constraint equations are the constraint equations of the Lagrange Multipliers method;

G1 (0)= 001+ 002-1 44
G2 (8)= 30ll 001+3021002+a11101l+a211021+a3118J1+a41l041+a511051+a611061+a711071 45
G3 (0)= 3012001+a022002+all2 01l+a212021+a3128J1+a412041+a512051+a612061+a712071 46

Then the objective function can be written as;
F( 0,1..)=00 llnCo1-00llnOO1+ &zlnC02-o02ln002+011lnC11+021lnC21+03IlnC3I+041lnC41

+051lnC51+061lnC61+071lnC71-A.I(001+002-1)-A.2(3011001+3021002+a111ol1+a211 47
OzI+a3l18J1+a411041+a511051+11611061+a711(71)-A.3(a0I200l+am2002+a11201l+a212
OzI+a312031+a412041+a512051+a612061+a712071)

Here, ~ for j=I,2,3 are non negative weighting factors, which are independent of o's and
identifiable as lagrange multipliers.

For optimum solution, the following set of equations must be satisfied,

In this problem;

...aE.- =lnCOI- I - InA.o1- AI - 1..23011- 1..33012=0
800J



.EE-= -a012 00l-a022 302-a112 011-a212021-a312~1-a412 041-a5120~wll612061-a712 ~1
OA3 .

Now, there are 12 equations and 12 unknowns so, the problem can be solved as
explained in previous sections ..

A computer program has been developed for the solution of the optimisation problem
which is formulated in the previous sections. QBASIC is used as the programming language in
the application.

Inputs:
Maximum spindle motor power: 12 kW, Maximum and minimum spindle speeds: 2500

rpm -10 rpm, Break speed of spindle motor: 500 rpm, Maximum and minimum feed rates: 3
mmI rev-O.OO1 mmlrev, Clamping force: 12000 N, Mass of chuck jaws: 2 kg, Coefficients of
friction of chuck jaws: 0.35, Tool material: HSS, Shear strength of tool material: 512 MPa,
Modulus of elasticity of tool material: 220 GPa, Workpiece material: Free machining carbon
steel, Drill diameter: 25 mm, Drill length: 65 mm, Machining length: 50 rom, Component
gripped radius: 30 rom, Machining cost rate: 1000 TLimin, Tool depreciation and resharpening
cost: 5000 TL, Tool change time: 0.1 min.

Outputs:
Optimum cutting speed: 60.2 m/min
Optimum feed rate : 0.05 mmlrev
Cost : 1380.3 TL
Cutting time : 1.305 min



A comparison between results obtained from this program and from Ref [3] (By
considering the same objective function, constraints and constants), and from Machining Data
Handbook [8] are given in Table 6.1:

Table 6.1 Co arison of Results
Geometric Ref [3]

Pro amming

60.2
0.05

1380.3
1.305

55
0.041

1772.93
1.741

50
0.021

3744.1
3.74

In this study a mathematical model has been developed for the constrained optimisation
of cutting conditions in drilling operations by using geometric programming technique.

Geometric programming is relatively straight fOlWard and easy to apply in solving
algebraic non-linear programming problems subject to non-linear constraints. However, in
cases where degree of difficulty is greater than one, geometric programming requires additional
effort to optimise the objective function. .

Cutting conditions in single pass machining operations with less number of constraints
can be easily optimised by using geometric programming technique. In the case of multi pass
machining operations and higher number of constraints additional methods are needed for
soh,ing the optimisation problem in geometric programming.

In this study drilling operation considered as a single pass machining operation. Seven
constraints are used in the optimisation. For solving six degree of difficulty problem Lagrange
Muhipliers method was used in addition to geometric programming technique.
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