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ABSTRACT - The task of assigning arriving flights to the available gates at an airport
can have a major impact on the efficiency with which the flight schedules are maintained
and on the level of passenger satisfaction. In this paper, optimum and heuristic
procedures are developed to assign flights in such a way that the idle periods, during
which gates are not utilized,. are distributed as uniformly as possible. Emprical study
indicates that up to 60% improvements can be achieved over the current practice.

The assignment of arriving aircraft to available gates in the apron area is a key
activity in airline station operations. A proper assignment increases the ability to handle
the large volumes of aircraft, passengers and baggages in a relatively short time. On the
other hand, delays may disrupt the premade assignments and compound the difficulty of
maintaining flight schedules efficiently. The importance of the gate assignment problem
has attracted many researchers over the past 20 years. Initially, mathematical models are
developed to minimize the average walking distance of the passengers inside the terminal
building ([1]-[3]). Since these models fail to address the minor changes in the flight
schedules, dynamic simulation models [4] and expert systems [5]-[8] are proposed to
handle the uncertain information, and to consider additional performance criteria. Beside
the difficulty in extracting the relevant knowledge, maintaining large complex systems,
equipped with many hundreds or thousands of rules addressing most of the significant
factors, becomes a critical factor.

In this work a mathematical model is developed to distribute the idle time periods,
during which gates are not occupied by aircraft, as evenly as possible so that the
assignments are flexible enough to cope with the minor changes. Several criteria,
(including the passenger satisfaction level) can be incorporated through a gate-aircraft
restriction matrix utilized in the model. Optimum and heuristic procedures are proposed
to produce a master gate-assignments which can be revised whenever a major change
disrupts the current assignments. A computational study is conducted over the randomly
generated data and the real data obtained from the Saudi Arabian Airline (SA) over the
domestic flights in the King Khaled International Airport (KKIA) in Riyadh.

Consider N flights to be assigned to M gates, each one is available from HBj till T
unit time. The expected arrival and departure time of flight i (Ai and Di) are known in
advance and expressed in terms of unit time. The problem is to find an assignment r,
where C represent the gate assigned for flight ~ so that the range of the slack time (idle



f, respectively, then the corresponding range is V(f) - V"(f). Let Vi(f) be the slack
time of flight i assigned in f, and B[. and E[- be the beginning and ending time of
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utilization period of gate r; by flight i. By definition Vi(f) = Ai - B[i and Eri = Di'

There is a relationship between B[. and the last flight used gate r;before i. Let z* be this
1

last flight, i.e., z* = max(z) so that fz = r; and 1:5:; z < 1. In case i is the first assignment,
then Bf. is set to HBf.. Similar precaution is taken when i is the last flight in gate j;
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slack occurs until the end of the period (VN+j = T - Ej).

Obviously, only feasible assignments are to be considered. The ground times of
two flights, consequtively assigned to the same gate, should not overlap (E[ z* :5:; Ai ).
Secondly, only assignments satisfying managerial considerations and passenger
expectations should be made, i.e., gate r; can be assigned to flight i if Pi [. = 1. (Pij is, 1

the gate restriction matrix equal to 0 if flight i is not allowed in gate j.) The following is
the mathematical presentation of the problem described above:

Find
so that
where

f
V(r) - V"(r) is minimized
V(r) = max{Vi(r)}
V'(f) = min {Vi(f)}
Vi(r) = Ai - Bf-1
Bfj = max(Ez*,HB[i)
z* = max (z) where fz = fi
E[. = Dj

1

Pi [- = 1, 1

Bf· :5:;Ai1

VN+j= T - Ej

i= 1, , N +M
i= 1, , N+M
i=1, ,N

and 1:5:; z < i
i= 1, , N

i= 1, , N

i= 1, , N

It is clear that problem size grows dnstically with the number of flights and gates.
Below we propose an optimum algorithm which will be the basis for the heuristic to be
utilized in solving practical instances of the problem.

Supressing the mathematical details for clarity of exposition, we first describe the
Optimum Branch and Trim (OBT) procedure. The ith layer of the tree corresponds to
the flight number under consideration and partial solution f at layer i-I (f~ is the set of
gate assignments for flights 1,2, ..., i-I. All (father) solutions in layer i-I are considered
to generate new (son) solutions in layer 1. Note that at most M sons can be generated for
each father depending on the gate restrictions and ground times of flights. If the resulting
slack time of flight i at the assigned gate does not make the range of the solution worse
than that of the incumbent, then a stronger dominance criteria can be applied.



We let LBV (fs) be a lower bound on the maximum slack time in the solutions

generated from son solution f S. The basic idea behind this bound is as follows: The
earliest available gate is detemined. Say it is gate p and Ep ~ Ej, j = 1,... , M.' It is clear

that some of the sons of f S may assign gate p to the next flight i+ 1, some of them may
assign a later flight k, and still others may not assign any flight at all. In the first case the
next slack time is A;+l - Bop, in the second case it is ~ - Bop which is not less than A;+1- £r,

and in the final case it is T - Bop. Hence, LBV(fs) = max{A;+l - Bop, V(fs)}. Solution

fS is kept as the sth new son solution ifit passes this criteria too. Once all promising
solutions are determined at the last layer, the slacks between the last flights and the 'end of
horizon are evaluated. The solution with the lowest range is the optimal one. We now
outline the procedure.

OBT Algorithm

Step O. Find an incumbent solution r* with the objective value y* = V(f*) - V(P').
Arrange flights in ascending order of their arrival times. Set r1 = <I> and F = 1.

Step 1. Consider each flight i in turn (i = 1,... ,N). Set f= 1 and s = 1.
Step 2. Consider each gate j in turn (j = 1,... , M) for the current flight i. Check for

feasibility: Assign flight i to gate j (fs= rf U j ) ifPij = 1 and A; ~ Br/ .

Check for pruning. Find the resultant slack time Yi( f s) and evaluate its effect

on the maximum and minimum slack times, i.e., find V(fs) and V(fs). If the
new range and the expected one are better than that of the incumbent then keep

the new son, i.e., set s = s + 1, ifV(fs) - V(fS
) < Y' and

LBV(f's) - V(f's) < y'.

Step 4 Arrange the new s son solutions in ascending order of their range, i.e.,
V(f'k) - V(f'k) ~ V(f'k+l) - V(tk) where k = 1,2, ... , s-1. Go to the next

layer with fl ,f2 , ... ,f's as father solutions. Set F =-~s.

Step 5 Evaluate the end effect of horizon for each solution rf. The one with the lowest
range and still better than the incumbent is the optimal one.

OBT constructs N layers and a father solution may generate up to M new son
solutions. In case neither of the criteria is able to prune any partial solution, the
maximum number of complete solution may become MN. (This exponential behaviour
points out the importance of the trimming schemes and starting with a good incumbent
solution.) Hence, a heuristic implementation ofOBT, which discards some of the father
solutions passed the both criteria, is adopted and called Truncated Branch Heuristic
(TBH). Let the beam size be the maximum number of father nodes to be considered at
the next layer. In the early layers the number of fathers may be less than the beam size,
allowing the propagation of all possible branches. Truncation will start later when s ~
Beam Size. The maximum number of solution at the final layer is bounded by Beam Size
xM. The outline of TBH is omitted because its differences from OBT are minimal.



(Pruning scheme can be kept when an ad hoc assignment is available initially.) It is
obvious that truncation may lead the TBH to miss the optimal solution. An inferior
solution may become better in later steps or vice versa. For that reason, there is no
quarantee that increasing beam size will yield better solutions. Until the algorithm reaches
the steady state, smaller beam sizes may perform better than the larger ones.

4 COMPUTATIONAL EXPERIMENTS

Both procedures are coded in FORTRAN 77 and tested on an AMDAML 5880
computer. BTO performs fairly well over the randomly generated data with constant
slack times. Slack time is treated as a parameter to determine the arival times of next
flights. Ground times are generated uniformly between 7 and 48 unit time. (A unit time
is equal to 5 minutes and the planning period is 288 unit time.) Schedules for the first 10
days are generated with one unit slack time indicating heaviest utilization. Then the next
10 days of schedules are generated with 2 unit slack time and so on. Finally schedules for
days III - 120 result in 12 unit slack time indicating the lightest utilization. It is observed
that BTO can assign 65 flights over 7 gates (with 3 unit slack time) within 96.74 seconds
(at most 14880 nodes evaluation at one level). In the worst cases, it takes 135.48 seconds
for assigning 55 flights over 7 gates (with 9 unit slack time). It evaluates maximum 16728
nodes while assigning 56 flights over 6 gates with I unit slack time. (To avoid memory
problems 20,000 father solutions are allowed at most in the tree.) The most difficult
schedules are observed when the slack times are 8 and 9 units; BTO can handle only 36
flights over 5 gates within 1553 and 882 seconds, respectively.

All of these results are achieved with the best incumbent solutions. By the
construction of the data, the ranges of all optimal solutions are zero. The effect of the
incumbent solution is studied over various starting points each defined by its range and
called "best result" available. In the worst case, the best result has a range of 6 unit time,
it is found that flights over 4 gates can be considered with an average of 34.4 flights.
Figure 1 presents how the vallie of incumbent solution effects the average computation
effort for assigning the flights optimally. It appears that this effect becomes significant
when the incumbent solution results in 5 or 6 unit time slack range. The analysis of two-
factor factorial design reveals that both the incumbent solution and the utilization level
(optimal slack time) effect significantly the performance of BTO for 5% level.
Furthermore, there is significant interaction between these factor, evident from the lack of
parallelism of the lines in the Figure.

To study the effect of data type we have generated 10 days of flight schedules
with varying slack times in each schedule. The length of the horizon is 200 unit time, and
th.e ground times are uniformly distributed between 2 and 53 unit time. Slack times are
also generated from a uniform distribution between 9 and 30 unit time. Now the
maximum number of flights that can be handled reduces to 20 over 4 gates. Furthermore,
the impact of the starting point is more evident: daily schedules 1 and 3 can be handled if
the incumbent solutions are very close to the optimal solutions (6.25% deviations). The
"easiest" schedule is set 5 for which BTO can find an optimal assignment even the
incumbent solution is 66.66% far from the optimality. Overall the average required
closeness to the optimality is 28.36% with a standard deviation of 19.64%. On the other
hand, computational effort shows a wider spread: maximum 134.69 and minimum 0.65
seconds are required with the best starting points.
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The TBH is tested over second group of data. (Note that it will yield the optimum
solutions over the first group of data even the beam size is set to 1). Table 1 presents the
results of TBH solutions with various beam sizes. The performance of TBH can be
categorized as follows: TBH reaches the steady state very quickly and finds an optimal
solution (over sets 2,4 and 6 with the beam sizes 1 or 2). Secondly, the steady state is
observed after some times and initial optimal solutions can be missed for larger beam sizes
(sets 8 and 10). Note that as large as 386 beam size is required to find the optimal solution
second time. Thirdly, steady non decreasing improvements can be observed as in sets 5, 7
and 9. Finally, very slow improvements with large beam sizes (set 3) or no improvements
at all (set 1) can be realized. In these cases, however, comparable low deviations result
from the optimality even with smaller beam sizes. Over 10 sets, average deviation is
approximately 3% when the beam size is around 400.

Finally, the TBH is tested over the real data sets collected from KKIA, Riyadll:
Daily domestic flights of Saudi Arabian Airline are considered from 19 October 1993 to
25 October 1993. Contrary to the randomly generated flights, some of the aircrafts, such
as AB 300, L1011, and B747, are not allowed to gates 1 and 8. (Since the flights can not
be decomposed based on the gates, it is very difficult to trim the real data to fit the sizes
that can be handled by the OBT algorithm.) We now turn to our primary objectives: The
number of flights that are served in the remote area and that are towed momentarily from
their assigned gates. The results are presented in Table 2. The current practice is a basic
application of the FCFS policy. TBH assigns the flights within a seconds with 100 beam
sizes. It seems that TBH solutions (generated based on the expected flight schedules and
evaluated by using the actual flight schedules) require 7.67 - 60.00% less remote servings
and towings combined with an average of 40.84%. The improvement over the number of
remote servings is between 50 - 100%, with an average of74.41 %.
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Figure 1: The computational effort of BTO over different slack times and
incumbent solutions.

DATA SET % deviation
Allowed 1 2 3 4 5 6 7 8 9 10 Average
Nodes from optimality

1 20 16 21 14* 169 16* 119 21 117 54 222.34
2 20 15* 21 14* 169 16* 119 19* 117 18* 200.62
5 20 15* 17 14* 169 16* 119 19* 117 18* 198.12
7 20 15* 17 14* 169 16* 119 75 117 171 312.60
10 20 15* 17 14* 130 16* 18* 75 117 171 234.82
29 20 15* 17 14* 130 16* 18* 75 91 171 220.38
30 20 15* 17 14* 130 16* 18* 75 18* 171 179.82
97 20 15* 17 14* 130 16* 18* 19* 18* 171 150.35
142 20 15* 17 14* 18* 16* 18* 19* 18* 171 88.12
385 20 15* 17 14* 18* 16* 18* 19* 18* 54 23.12
386 20 15* 17 14* 18* 16* 18* 19* 18* 18* 3.13
2801 20 15* 16* 14* 18* 16* 18* 19* 18* 18* 2.50
6689 20 15* 16* 14* 18* 16* 18* 19* 18* 18* 2.50

No. of TBH Solutions Practice of KKIA % of Improvement
Date Flights

Remote Towed Remote To-wed Remote To-wed Total
9 October 1933 72 3 3 6 6 50.00 50.00 50.00
10 October 1993 77 4 8 8 5 50.00 -60.00 7.69
11 October 1993 81 1 8 11 6 90.90 -33.33 47.06
12 October 1993 72 1 3 5 3 80.00 0.00 50.00
13 October 1993 82 I 7 6 3 83.33 -133.33 11.11
14 October 1993 64 1 1 3 2 66.67 50.00 60.00
15 October 1993 79 0 4 7 3 100.00 -33.33 60.00


