
Mathematical & Computational Applications, Vol. I, No. l,pp. 60-65,1996
© Associatioo for Scientific Research

SATISFACTION OF BOUNDARY CONDITIONS ON COMPLEX CHANNEL
WALLS WITH QUADRATIC MINIMIZATION METHOD

E. FuadKENT
Istanbul Technical University, Mechanical Engineering Faculty,

Department of Thermodynamics, 80191, Gumussuyu, Istanbul, Turkey

Abstract- Numerical analysis of cellular two-dimensional Stokes flow induced by
rotation of a circular cylinder in a V-shaped channel bounded by a cylindrical surface has
been made. In the numerical calculations, series in terms of polar coordinates are used to
represent the stream function and quadratic minimization method is employed to satisfy
the outer boundary conditions on the channel walls. Numerical results are presented in
the form of streamline patterns.

In this work, cellular two-dimensional Stokes flow induced by rotation of a circular
cylinder in a V-shaped channel bOlmded by a cylindrical surface is analyzed numerically.
In recent literature, much work has been devoted to the study of cavity flow, to
separation phenomena and to viscous cells. The most studied case is naturally a cavity of
a rectangular shape. The work done on this subject and many practical applications
encountered have been provided by Shen and Floryan[I], Higdon[2], Rybicki and
Floryan[3].

In the closed rectangular cavity, the fluid motion is forced by the translation of the upper
boundary with uniform velocity in its own plane. This is the well-known driven cavity
problem which has been subjected to many numerical investigations, such as finite
differences, finite elements, false transients, spectral methods, multigrid methods, etc.
Some of these include BurggrafI4], Tuann and Olson[5], Obia, Ghia and Shin[6],
Schreiber and Keller[7], Gustafson and Halasi[8], Napolitano and Pascazio[9], Shyy,
Thakur and Wrigth[10], lliev, Makarov and Vassilevski[ll] and Cortes and Miller[12].
Shankar[13] investigated the motion in the cavity by an analytical and semi-analytical
method.

Although the rectangular cavity flow has been investigated extensively,publications are
very scarce on the subject of the triangular cavity. In fact, the triangular shape is more
common in practice. The practical applications of the triangular grooves are described by
Ribbens, Watson and Wang[14] and in a related work by Savvides and Gerrard[15].

In this paper, numerical analysis of cellular two-dimensional Stokes flow induced by
rotation of a circular cylinder in a V-shaped channel bounded by a cylindrical surface has
been made. In the calculations, series in terms of polar coordinates are used to represent
the stream function and quadratic minimization method is employed to satisfy the outer
boundary conditions on the channel walls. The streamline patterns are obtained for
different wedge lengths. The mathematical formulation of th.e problem is given in the



next section. The application of quadratic minimization method is explained in detail in
Section 3, which outlines the numerical procedure used. The results of the numerical
calculations are given in the form of streamlines in Section 4.

Let us consider an infinitely long vertical circular cylinder of radius RI, placed in a V-
shaped channel bounded by a cylindrical surface of radius R2, as shown in Fig. 1. The
rotating cylinder is positioned at the center of the cylindrical surface O. As can be seen
from Fig. 1, this special geometry of the outer boundary of the channel has only one sharp
comer atP.

The cylindrical surface and wedge are matched at A and A' such that there are no sharp
comers at A and A'. The distance between the center of the cylinder and the comer is
denoted by yo. The wedge angle is 2a.

This channel is filled with a highly viscous fluid of constant physical properties; its
kinematic viscosity is denoted by v. The motion is obtained by a very slow rotation of
the inner cylinder with a uniform angular velocity roo.Thus the Reynolds number of the
flow, defined by Re=(rooR12)/V, is supposed to be sufficiently small to ensure the validity
of the Stokes regime hypothesis. Under these conditions, the equation of motion in the
horizontal cross-section is

A(A \jI)=V\v=O
(1)
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If the coordinate r and the radial and tangential velocity components Vr and Ve are
normalized by R1 and rooRlrespectively, the boundary conditions on the cylinder are
written as follows

The no-slip bOlmdary condition on the inner rotating cylinder (3) is satisfied exactly by
the polar coordinate series (2). But the no-slip condition on the outer channel walls (4)
cannot be satisfied exactly by these series because these walls are not coordinate surfaces
of the frame that we have used to define the stream function. Therefore, the latter
condition has been satisfied optimally by using the quadratic minimization method.
Applying the boundary conditions (3), (4), (5) to (2) we will determine the coefficients
of the series (2). The numerical procedure will be explained in the next section.

The satisfaction of the boundary conditions on the outer channel walls with quadratic
minimization method consists of minimizing the quadratic difference between the
imposed velocity on the boundary and the velocity deduced from the series (2). This
corresponds to the minimization of the integral

1= J (Vr
2 + V/)dS

r

where r is the outer boundary. For convenience of programming, we can write the
expressions for the velocity components and stream function calculated from (2), in the
linear form



4N+l

Vy = LAjFj
j=!

4N+!

Vo = r+ LAjGj
j=!

where Aj represents the coefficients bo , bn , dn , ••••• ; N the number of terms retained in
the series (2).

4N+l

LAjL(F/Fj +G;Gj} = -rLG/
J=1 Np Np

In this system the integrals are replaced by a simple summation on an adequate number
Np of points, regularly spaced on the outer boundary r.

This linear system yields the unknown Aj coefficients from which we shall calculate
velocity components and stream function. To check the accuracy of the results, the mean
values of the velocity on the channel walls are calculated and the numerical results are
presented in the next section.

In our calculations, the number of terms N retained in the series (2) is 40. Initially, we
tried with 30, 40 and 50 terms in the series, and saw that this would not sensibly affect
the accuracy of the result, so we decided to use 40 terms in the calculations. Thus, using
161 coefficients Aj of the series and 361 minimjzation points Np, we have obtained
streamline patterns for different values of Yo. For the numerical calculations, confining
aspect ratio R11R2 is 0.5. For convenience, R1 is set to 1. Yo is variable and taken as a
parameter. The mean values of the velocity VR on the channel walls are calculated and
tabulated in Table I for different values of Yo.



Yo 2a VR bo
2.5 86 ° 4.082xlO-6 1.525
3 70· 3.776 xl0-!5 1.434
4 600 5.380 xlO-4 1.365
5 46· 1.909 xlO-3 1.341
6 40' 9.946 xlO-4 1.329
7 32' 1.442 xlO-3 1.323
7.5 30' 2.073xlO-3 1.320

In this table, the values of bo that represents the ratio of the torque experienced by the
cylinder in the channel to the torque experienced by this cylinder in an infinite medium
are also indicated. We have obtained excellent accuracy for small Yo values. As can be
seen from this table, the accuracy begins to decrease when Yo takes large values. It is
due to the presence of the positive exponents in the series which increase with increasing
distance. This prevents to detect the cellular flow in the vicinity of the comer only at
large yo.
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It must be worthwhile to note that these numerical results are in excellent agreement with
the corresponding visualization photographs obtained by the author, Kent[l6]
experimentally by means of flow visualization technique for the same geometry.



Numerical analysis of cellular two-dimensional Stokes flow induced by rotation of a
cylinder in a wedge-shaped channel bounded by a cylindrical surface has been made. The
satisfaction of the boundary conditions on the outer channel walls with quadratic
minimization method is explained in detail. Numerical resuhs are presented in the form
of streamline patterns.
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